首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular interactions between an anticancer drug, paclitaxel, and phosphatidylcholine (PC) of various chain lengths were investigated in the present work by the Langmuir film balance technique and differential scanning calorimetry (DSC). Both the lipid monolayer at the air-water interface and lipid bilayer vesicles (liposomes) were employed as model biological cell membranes. Measurement and analysis of the surface pressure versus molecular area curves of the mixed monolayers of phospholipids and paclitaxel under various molar ratio showed that phospholipids and paclitaxel formed a nonideal miscible system at the interface. Paclitaxel exerted an area-condensing effect on the lipid monolayer at small molecular surface areas and an area-expanding effect at large molecular areas, which could be explained by the intermolecular forces and geometric accommodation between the two components. Paclitaxel and phospholipids could form thermodynamically stable monolayer systems: the stability increased with the chain length in the order DMPC (C14:0)>DPPC (C16:0)>DSPC (C18:0). Investigation of paclitaxel penetration into the pure lipid monolayer showed that DMPC had a higher ability to incorporate paclitaxel and the critical surface pressure for paclitaxel penetration also increased with the chain length in the order DMPC>DPPC>DSPC. A similar trend was testified by DSC studies on vesicles of the mixed paclitaxel/phospholipids bilayer. Paclitaxel showed the greatest interaction with DMPC while little interaction could be measured in the paclitaxel/DSPC liposomes. Paclitaxel caused broadening of the main phase transition without significant change at the peak melting temperature of the phospholipid bilayers, which demonstrated that paclitaxel was localized in the outer hydrophobic cooperative zone of the bilayer. The interaction between paclitaxel and phospholipid was nonspecific and the dominant factor in this interaction was the van der Waals force or hydrophobic force. As the result of the lower net van der Waals interaction between hydrocarbon chains for the shorter acyl chains, paclitaxel interacted more readily with phospholipids of shorter chain length, which also increased the bilayer intermolecular spacing.  相似文献   

2.
We investigate the interparticle interactions, phase behavior, and structure of microsphere-nanoparticle mixtures that possess high size and charge asymmetry. We employ a novel Monte Carlo simulation scheme to calculate the effective microsphere interactions in suspension, yielding new insight into the origin of the experimentally observed behavior. The initial settling velocity, final sediment density, and three-dimensional structure of colloidal phases assembled from these binary mixtures via gravitational settling of silica microspheres in water and index-matched solutions exhibit a strong compositional dependence. Confocal laser scanning microscopy is used to directly image and quantify their structural evolution during assembly. Below a lower critical nanoparticle volume fraction (phi(nano) < phi(L,C)), the intrinsic van der Waals attraction between microspheres leads to the formation of colloidal gels. These gels exhibit enhanced consolidation as phi(nano) approaches phi(L,C). When phi(nano) exceeds phi(L,C), an effective repulsion arises between microspheres due to the formation of a dynamic nanoparticle halo around the colloids. From this stable fluid phase, the microspheres settle into a crystalline array. Finally, above an upper critical nanoparticle volume fraction (phi(nano) > phi(U,C)), colloidal gels form whose structure becomes more open with increasing nanoparticle concentration due to the emergence of an effective microsphere attraction, whose magnitude exhibits a superlinear dependence on phi(nano).  相似文献   

3.
4.
The milestones formerly achieved in the comprehension of ion transport across biological membranes on the basis of electrochemical concepts and/or instrumentation are briefly summarized. The various types of model membranes presently employed for the investigation of ion transport across biomembranes are reviewed and their requirements for the incorporation and functional investigation of membrane proteins are examined. The potential of model membranes for the elucidation of many problems in molecular membrane biology and for the realization of microarray sensors individually addressable to membrane proteins by electrochemical means is assessed.  相似文献   

5.
Model surfaces representative of chromatographic stationary phases were developed by immobilising an homologous series (C2-C18) of n-alkylthiols, mixed monolayers of C4/C18 and thioalkanes with alcohol, carboxylic acid, amino and sulphonic acid terminal groups onto a flat, silver-coated glass surface using self-assembled monolayer (SAM) chemistry. The processes of adsorption and desorption of serum albumins onto the monolayer surfaces was monitored in real-time using surface plasmon resonance (SPR). Alkyl-terminated SAMs all showed a strong adsorption of bovine serum albumin which was largely independent of alkyl chain length, the ratio of mixed C4/C18 SAMs or the solution pH/ionic strength. The adsorption of human serum albumin to carboxylic and amine terminated SAMs was shown to be predominantly via non-electrostatic interactions (hydrophobic or hydrogen bonding). However, sulphonic acid terminated SAMs showed almost exclusively electrostatic interactions with human serum albumin. This preliminary work using self-assembled monolayer chemistry confirms the usefulness of well characterised SAMs surfaces for investigating protein adsorption and desorption onto/from model chromatography surfaces and gives some guidance for selecting appropriate functionalities to develop better surfaces for chromatography and electrophoresis.  相似文献   

6.
7.
Cubic liquid crystalline phases are common in surfactant and surfactant-like lipid systems at temperatures above the Krafft point. They are optically isotropic and very stiff. Therefore, they are often not recognized as independent phases and separated in pure state. The liquid crystalline nature is evidenced by a low-angle diffraction pattern with sharp reflections having Bragg-values above 20 Å coupled with a diffuse wide-angle reflection at 4.5 Å, proving that the hydrocarbon moiety is in a liquid state. The cubic phases occur in a variety of lipid/water systems (also with liquid organic solvents), such as simple soaps, amphiphilic lipids of biological origin, and extracts from membrane lipids. The location of the cubic phases in a phase diagram varies.The original concept of a cubic structure composed of closed globular aggregates, either of oil-in-water or water-in-oil type in face-centered array seems to be obsolete. The present structure concepts include closed anisotropic aggregates, short rod-like aggregates forming continuous networks or lamellar aggregates with zero curvature forming networks of Infinite Periodic Minimal Surfaces (IPMS). The structure is mostly primitive or body-centered cubic.  相似文献   

8.
Sub-diffraction optical imaging with nanometer resolution of lipid phase-separated regions is reported. Merocyanine 540, a probe whose fluorescence is sensitive to the lipid phase, is combined with super-resolution imaging to distinguish the liquid- and gel-phase nanoscale domains of lipid bilayers supported on glass. The monomer-dimer equilibrium of MC540 in membranes is deemed responsible for the population difference of single-molecule fluorescence bursts in the different phase regions. The extension of this method to other binary or ternary lipid models or natural systems provides a promising new super-resolution strategy.  相似文献   

9.
Docetaxel (DCT) is an antineoplastic drug for the treatment of a wide spectrum of cancers. DCT surface properties as well as miscibility studies with l-alpha-dipalmitoyl phosphatidylcholine (DPPC), which constitutes the main component of biological membranes, are comprehensively described in this contribution. Penetration studies have revealed that when DCT is injected under DPPC monolayers compressed to different surface pressures, it penetrates into the lipid monolayer promoting an increase in the surface pressure. DCT is a surface active molecule able to decrease the surface tension of water and to form insoluble films when spread on aqueous subphases. The maximum surface pressure reached after compression of a DCT Langmuir film was 13 mN/m. Miscibility of DPPC and DCT in Langmuir films has been studied by means of thermodynamic properties as well as by Brewster angle microscopy (BAM) analysis of the mixed films at the air-water interface, concluding that DPPC and DCT are miscible and they form non-ideally mixed monolayers at the air-water interface. Helmholtz energies of mixing revealed that no phase separation occurs. In addition, Helmholtz energies of mixing become more negative with decreasing areas per molecule, which suggests that the stability of the mixed monolayers increases as the monolayers become more condensed. Compressibility values together with BAM images indicate that DCT has a fluidizing effect on DPPC monolayers.  相似文献   

10.
The complexation kinetics of Mg2+ with CO 3 = and HCO 3 ? has been studied in methanol and water by means of the stopped-flow and temperature-jump methods. Kinetic parameters were obtained in methanol by coupling the magnesium-carbonato reactions with the metal-ion indicator Murexide. Relatively high stability constants were found in methanol (K=1.0×105 liters-mole?1 for Mg2+-Murexide,K=7.0×104 liters-mole?1 for Mg2+?HCO 3 ? , andK=2.0×105 for Mg2+?CO 3 = liters-mole?1). The corresponding, observed formation rate constants were determined to be $$\begin{gathered} k_f = 4.0 \times 10^6 M^{ - 1} - sec^{ - 1} (Mg^{2 + } - Murexide) \hfill \\ k_f = 5.0 \times 10^5 M^{ - 1} - sec^{ - 1} (Mg^{2 + } - HCO_3^ - ) \hfill \\ k_f = 6.8 \times 10^5 M^{ - 1} - sec^{ - 1} (Mg^{2 + } - CO_3^ = ) \hfill \\ \end{gathered} $$ The relaxation times were found to be much shorter (τ≈5–20 μsec) in aqueous solutions, primarily due to the relatively high dissociation rate constants. The data could be interpreted on the basis of a coupled reaction scheme in which the protolytic equilibria are established relatively rapidly, followed by a single relaxation process due to the formation of MgHCO 3 + and MgCO3 between pH 8.7 and 9.3. The observed formation rate constants were determined to be $$\begin{gathered} k_f = 5.0 \times 10^5 M^{ - 1} - sec^{ - 1} (Mg^{2 + } - HCO_3^ - ) \hfill \\ k_f = 1.5 \times 10^6 M^{ - 1} - sec^{ - 1} (Mg^{2 + } - CO_3^ = ) \hfill \\ \end{gathered} $$ These results, in conjunction with NMR solvent exchange rate constants, are analyzed in terms of a dissociative (S N1) mechanism for the rate of complex formation. The significance of these kinetic parameters in understanding the excess sound absorption in seawater is discussed.  相似文献   

11.
Lipophilic conjugates of the antitumor drug methotrexate (MTX) with lipoamino acids (LAAs) have been previously described as a tool to enhance MTX passive entrance into cells, overcoming a form of transport resistance which makes tumour cells insensitive to the antimetabolite. A knowledge of the mechanisms of interaction of such lipophilic derivatives with cell membranes could be useful for planning further lipophilic MTX derivatives with an optimal antitumour activity. To this aim, a calorimetric study was undertaken using a biomembrane model made from synthetic 1,2-dipalmitoyl-glycero-3-phosphocholine (DPPC) multilamellar liposomes. The effects of MTX and conjugates on the phase transition of liposomes were investigated using differential scanning calorimetry.

The interaction of pure MTX with the liposomes was limited to the outer part of the phospholipid bilayers, due to the polar nature of the drug. Conversely, its lipophilic conjugates showed a hydrophobic kind of interaction, perturbing the packing order of DPPC bilayers. In particular, a reduction of the enthalpy of transition from the gel to the liquid crystal phase of DPPC membranes was observed. Such an effect was related to the structure and mole fraction of the conjugates in the liposomes.

The antitumour activity of MTX conjugates was evaluated against cultures of a CCRF–CEM human leukemic T-cell line and a related MTX resistant sub-line. The in vitro cell growth inhibitory activity was higher for bis(tetradecyl) conjugates than for both the other shorter- and longer-chain derivatives. The biological effectiveness of the various MTX derivatives correlated very well with the thermotropic effects observed on the phase transition of DPPC biomembranes.  相似文献   


12.
13.
In the last years a number of advances have been made in our understanding of the high pressure phase behaviour of lipid and surfactant systems, in particular of phospholipid bilayers which can serve as model biomembrane systems. Hydrostatic pressure has been used as a physical parameter for studying the stability and energetics of lyotropic lipid mesophases, but also because high pressure is an important feature of certain natural membrane environments (e.g. of marine biotopes) and because the high pressure phase behaviour of biomolecules is of biotechnological interest (e.g. for high pressure food processing). It has been demonstrated that temperature and pressure have non-congruent effects on the structural and phase behaviour of these systems. By using the pressure–jump relaxation technique in combination with time-resolved synchrotron X-ray diffraction, the kinetics of different mesophase transformations was also investigated.  相似文献   

14.
Infinite dilution gas-liquid chromatographic activity coefficients (gamma) and excess thermodynamic molar partial magnitudes [Gibbs energy (G(E)), enthalpy (H(E)), and entropy (S(E))] for 37 solutes of varied polarity on four stationary phases with -NH groups are obtained from partition coefficients taken from literature. Relationships between G(E) and S(E) with the 37 solutes' structure in terms of the molecular connectivity index ((1)chi(v)) are investigated. Correlations of solute-solvent interactions calculated in light of the solvation parameter model for selected solutes and stationary phases are tested. The effect of the solute's structure, expressed as the molecular connectivity index, on the nonpolar (cavity formation and dispersion interaction) [c+l. log L(16)] and the effect of the dipole moment and of the activity coefficient on the dipolarity-polarizability interaction (spi(2)(H)) are studied. The correlation between the nonpolar interaction with the athermal activity coefficient on the nonpolymeric stationary phases is also attempted. In addition, the influence of the stationary phase polarity on the solute-stationary phase interactions for a series of solutes is studied.  相似文献   

15.
We investigate the effect of specific conformations of double-bond segments in highly polyunsaturated acyl chains on the deuterium (2)H NMR order parameters of a fully hydrated 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (SDPC, 18:0/22:6 PC) lipid bilayer. The system is analyzed by performing a molecular dynamics simulation study at ambient conditions in the fluid lamellar phase. By separately calculating the different partial contributions to the total order parameter profiles measurable experimentally, we are able to get insights into the molecular origin of earlier experimental and theoretical observations. The effect of the position of the different conformations of double-bond segments along the polyunsaturated acyl chain is also examined. As in experiments performed in a series of lipid bilayers with an increasing number of cis double bonds per lipid molecule [Holte, L. L., et al. Biophys. J. 1995, 68, 2396], we find that unsaturations influence mainly the order of the bottom half of the saturated chain. Specific conformations of the polyunsaturated chain close to the lipid headgroups have a distinct effect on the order of the bottom half of the saturated chain and on the top half of the polyunsaturated chain. Our results indicate that for SDPC the conformation of the region of the polyunsaturated chain located between the first three cis double bonds is responsible for the major effects on the orientational order of both the saturated and the polyunsaturated chains.  相似文献   

16.
17.
The existence of relatively large and long-lived detergent-insoluble, sphingolipid- and cholesterol-enriched, liquid-ordered lipid raft domains in the plasma membranes of eukaryotic cells has become widely accepted. However, we believe that the evidence for their existence is not compelling despite extensive work on both lipid bilayer model and biological membranes. We review here the results of recent studies, which in our view call into question the existence of lipid rafts in membranes, at least in the form commonly depicted.  相似文献   

18.
Biological membranes undergo constant shape remodeling involving the formation of highly curved structures. The lipid bilayer represents the fundamental architecture of the cellular membrane with its shapes determined by the Helfrich curvature bending energy. However, the dynamics of bilayer shape transitions, especially their modulation by membrane proteins, and the resulting shape instabilities, are still not well understood. Here, we review in a unifying manner several theories that describe the fluctuations (i.e. undulations) of bilayer shapes as well as their local coupling with lipid or protein density variation. The coupling between local membrane curvature and lipid density gives rise to a ‘slipping mode’ in addition to the conventional ‘bending mode’ for damping the membrane fluctuation. This leads to a number of interesting experimental phenomena regarding bilayer shape dynamics. More importantly, curvature-inducing proteins can couple with membrane shape and eventually render the membrane unstable. A criterion for membrane shape instability is derived from a linear stability analysis. The instability criterion reemphasizes the importance of membrane tension in regulating the stability and dynamics of membrane geometry. Recent progresses in understanding the role of membrane tension in regulating dynamical cellular processes are also reviewed. Protein density is emphasized as a key factor in regulating membrane shape transitions: a threshold density of curvature coupling proteins is required for inducing membrane morphology transitions.  相似文献   

19.
We report extensive Monte Carlo and event-driven molecular dynamics simulations of a liquid composed of particles interacting via hard-sphere interactions complemented by four tetrahedrally coordinated short-range attractive ("sticky") spots, a model introduced several years ago by Kolafa and Nezbeda (Kolafa, J.; Nezbeda, I. Mol. Phys. 1987, 87, 161). To access the dynamic properties of the model, we introduce and implement a new event-driven molecular dynamics algorithm suited to study the evolution of hard bodies interacting, beside the repulsive hard-core, with a short-ranged interpatch square well potential. We evaluate the thermodynamic properties of the model in deep supercooled states, where the bond network is fully developed, providing evidence of density anomalies. Different from models of spherically symmetric interacting particles, the liquid can be supercooled without encountering the gas-liquid spinodal in a wide region of packing fractions phi. Around an optimal phi, a stable fully connected tetrahedral network of bonds develops. By analyzing the dynamics of the model we find evidence of anomalous behavior: around the optimal packing, dynamics accelerate on both increasing and decreasing phi. We locate the shape of the isodiffusivity lines in the (phi - T) plane and establish the shape of the dynamic arrest line in the phase diagram of the model. Results are discussed in connection with colloidal dispersions of sticky particles and gel-forming proteins and their ability to form dynamically arrested states.  相似文献   

20.
Cubic liquid crystalline phases are abundant in systems of surfactants and surfactant-like lipids. Characteristic for them is that there is a three-dimensional crystalline long-range order while the order on atomic level is liquid-like.The cubic phases occur in quite different compositional regions and belong to quite different space groups, both primitive, body-centered and face-centered. Several space groups in the International System are considered, in the first place Nos. 218, 223, 224, 227, 229 and 230. The existence of cubic phases is not always recognised due to optical isotropy and stiffness. There are often difficulties in obtaining the cubic phases in pure state.Membrane lipids participate actively in the functions of living cells and it is probable that the formation of cubic phases here have a role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号