首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
A simple approach to a microfluidic device is described. The device is composed of flexible tubing and a needle inserted orthogonal to the long axis of the tubing. This design is well suited to creating oil-water interfaces allowing the formation of laminar flows and monodisperse emulsions. The system is characterized by mapping the phases observed as a function of organic phase flow and Reynolds number. In addition, the device allows interfacial polymerization reactions to capture low coefficient of variation capsules. The shell structure and surface are examined by scanning electron microscopy.  相似文献   

3.
Hung LH  Choi KM  Tseng WY  Tan YC  Shea KJ  Lee AP 《Lab on a chip》2006,6(2):174-178
A multifunctional and high-efficiency microfluidic device for droplet generation and fusion is presented. Through unique design of the micro-channels, the device is able to alternately generate droplets, generating droplet ratios ranging from 1 ratio 5 to 5 ratio 1, and fuse droplets, enabling precise chemical reactions in several picoliters on a single chip. The controlled fusion is managed by passive control based on the channel geometry and liquid phase flow. The synthesis of CdS nanoparticles utilizing each fused droplet as a microreactor for rapid and efficient mixing of reagents is demonstrated in this paper. Following alternating droplet generation, the channel geometry allows the exclusive fusion of alternate droplets with concomitant rapid mixing and produces supersaturated solution of Cd2+ and S2- ions to form CdS nanoparticles in each fused droplet. The spectroscopic properties of the CdS nanoparticles produced by this method are compared with CdS prepared by bulk mixing.  相似文献   

4.
A novel microfluidic droplet generator is proposed, which can control the droplet size through turning an integrated micrometer head with ease, and the size of the produced micro-droplet can be automatically and real-time monitored by an open-sourced software and off-the-shelf hardware.  相似文献   

5.
This paper describes the fabrication and use of a biomimetic microfluidic device for the monitoring of a functional porin reconstituted within a miniaturized suspended artificial bilayer lipid membrane (BLM). Such a microfluidic device allows for (1) fluidic and electrical access to both sides of the BLM and (2) reproducible membrane protein insertion and long-term electrical monitoring of its conductance (G(i)), thanks to the miniaturization of the BLM. We demonstrate here for the first time the feasibility to insert a large trans-membrane protein through its β-barrel, and monitor its functional activity for more than 1 hour (limited by buffer evaporation). In this paper, we specifically used our device for the monitoring of OprM, a bacterial efflux channel involved in the multidrug resistance of the bacteria Pseudomonas aeruginosa. Sub-steps of the OprM channel conductance were detected during the electrical recordings within our device, which might be due to oscillations between several structural conformations (sub-states) adopted by the protein, as part of its opening mechanism. This work is a first step towards the establishment of a genuine platform dedicated to the investigation of bacterial proteins under reconstituted conditions, a very promising tool for the screening of new inhibitors against bacterial channels involved in drug resistance.  相似文献   

6.
Xu JH  Luo GS  Li SW  Chen GG 《Lab on a chip》2006,6(1):131-136
Perpendicular flow is used to induce oil droplet breakup by using a capillary as water phase flow channel. It is a new route to produce monodisperse emulsions. The wetting properties of the fluids on the walls are exceedingly important parameters. Depending on the oil and water flow rates, different spatial distributions of the two phases as laminar, plugs, cobbles and drops, are obtained. The effects of two-phase flow rates on plugs and drop size are studied, and the different droplet formation mechanisms of plug flow and drop flow are discussed. Two quantitative equations utilized to predict the droplet size are developed.  相似文献   

7.
Sub-nanolitre droplets engineered in microfluidic devices constitute ideal microreactors to investigate the kinetics of chemical reactions on the millisecond time scale. Up to date, fluorescence detection has been extensively used in chemistry and biology to probe reactants and resultant products within such nanodroplets. However, although fluorescence is a very sensitive technique, it lacks intrinsic specificity as frequently fluorescent labels need to be attached to the species of interest. This weakness can be overcome by using vibrational spectroscopy analysis. As an illustrative example, we use confocal Raman microspectroscopy in order to probe the concentration profiles of two interdiffusing solutes within nanolitre droplets transported through a straight microchannel. We establish the feasibility of the experimental method and discuss various aspects related to the space-time resolution and the quantitativeness of the Raman measurements. Finally, we demonstrate that the droplet internal molecular mixing is strongly affected by the droplet internal flow.  相似文献   

8.
High-throughput screening (HTS) of enzymatic activity is important for directed evolution-based enzyme engineering. However, substrate and product diffusion can severely compromise these HTS assays. In this issue of Chemistry & Biology, Kintses and coworkers describe a microfluidic platform for the directed evolution of enzymes in droplets that allows for the screening of 10(7) mutants per round of evolution.  相似文献   

9.
This work describes a new microfluidic device developed for the rapid screening of solubility diagrams. In several parallel channels, hundreds of nanolitre volume droplets of a given solution are first stored with a gradual variation in the solute concentration. Then, the application of a temperature gradient along these channels enables us to read directly and quantitatively phase diagrams, concentration vs. temperature. We show, using a solution of adipic acid, that we can measure ten points of the solubility curve in less than 1 hr and with only 250 microL of solution.  相似文献   

10.
Kim KP  Kim YG  Choi CH  Kim HE  Lee SH  Chang WS  Lee CS 《Lab on a chip》2010,10(23):3296-3299
Antibiotic resistance of biofilms is a growing public health concern due to overuse and improper use of antibiotics. Thus, determining an effective minimal concentration of antibiotics to eradicate bacterial biofilms is crucial. Here we present a simple, novel one-pot assay for the analysis of antibiotic susceptibility of bacterial biofilms using a microfluidics system where continuous concentration gradients of antibiotics are generated. The results of minimal biofilm eradication concentration (MBEC) clearly confirm that the concentration required to eradicate biofilm-grown Pseudomonas aeruginosa is higher than the minimal inhibitory concentration (MIC) that has been widely used to determine the lowest concentration of antibiotics against planktonically grown bacteria.  相似文献   

11.
A rapid method for sensitive ultraviolet detection of multiple psychotropic drugs in human plasma was developed on a low-cost and expediently fabricated hybrid microfluidic device. The device was composed of one fused-silica capillary with a sampling fracture, a poly(methyl methacrylate) board with four reservoirs, and a printed circuit board. At the optimal separation and detection conditions, the baseline separation of three kinds of psychotropic drugs including barbiturates (phenobarbital and barbital), benzodiazepines (nitrazepam, clonazepam, chlordiazepoxide, alprazolam and diazepam) and tricyclic antidepressant drugs (amitriptyline) was achieved within 200 s with separation efficiency up to 3.80 × 10(5) plates m(-1). The linear ranges for ultraviolet detection were from 2.0 to 1000.0 μg mL(-1) for chlordiazepoxide and 1.0 to 1000.0 μg mL(-1) for other seven drugs. Combining with solid-phase extraction, this novel protocol could successfully be used to screen naturally existing psychotropic drugs in a known human plasma sample. The minimum detectable concentration was down to 27 ng mL(-1) for phenobarbital spiked in plasma. This work provided a promising way to initially screen different psychotropic drugs with high resolution, rapid separation and low-cost.  相似文献   

12.
The widespread development of microfluidics (microfluidics) has allowed the extension of efficient separations, fluid handling, and hyphenation with many detection modes to a small, portable, highly controllable physico-chemical platform. Surface enhanced Raman spectroscopy (SERS) offers the powerful advantage of obtaining vibrational spectroscopic information about analytes in an aqueous matrix with negligible background. The mating of electrophoretic separations with vibrational spectroscopy on a microfluidic device will allow the chromatographic efficiency of capillary electrophoresis (CE) with the unequivocal analyte "fingerprinting" capability of detailed structural information. By utilizing SERS as a means of detection, this work promises to yield redress for the hindrances of electrophoretic separations, including uncertainty in analyte band identification due to changing migration times as well as compromised detection sensitivity for non-fluorescent analytes. Our work represents the first steps toward developing CE-SERS on a microfluidic platform with a region of novel metal-pliable polymer nanocomposite SERS substrate fabricated directly into the device. The device fabrication material has been extensively employed by the microfluidics community for over five years. SERS detection can be achieved in real time or after the separations, with on-column laser-induced fluorescence employed as a secondary detection mode used for confirmation of efficiencies and band locations.  相似文献   

13.
High-throughput rheology in a microfluidic device   总被引:2,自引:0,他引:2  
Schultz KM  Furst EM 《Lab on a chip》2011,11(22):3802-3809
High-throughput rheological measurements in a microfluidic device are demonstrated. A series of microrheology samples are generated as droplets in an immiscible spacer fluid using a microfluidic T-junction. The compositions of the sample droplets are continuously varied over a wide range. Rheology measurements are made in each droplet using multiple particle tracking microrheology. We review critical design and operating parameters, including the droplet size, flow rates and rapid fabrication methods. Validation experiments are performed by measuring the solution viscosity of glycerine and the biopolymer heparin as a function of concentration. Overall, the combination of microrheology with microfluidics maximizes the number of rheological measurements while simultaneously minimizing the sample preparation time and amount of material, and should be particularly suited to the characterization of scarce or expensive materials.  相似文献   

14.
Stop-flow lithography in a microfluidic device   总被引:1,自引:0,他引:1  
Polymeric particles in custom designed geometries and with tunable chemical anisotropy are expected to enable a variety of new technologies in diverse areas such as photonics, diagnostics and functional materials. We present a simple, high throughput and high resolution microfluidic method to synthesize such polymeric particles. Building off earlier work that we have done on continuous flow lithography (CFL) (D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, P. S. Doyle, Nat. Mater., 2006, 5, 365-369; ref. 1), we have devised and implemented a new setup that uses compressed air driven flows in preference to syringe pumps to synthesize particles using a technique that we call stop-flow lithography (SFL). A flowing stream of oligomer is stopped before polymerizing an array of particles into it, providing for much improved resolution over particles synthesized in flow. The formed particles are then flushed out at high flow rates before the cycle of stop-polymerize-flow is repeated. The high flow rates enable orders-of-magnitude improvements in particle throughput over CFL. However, the deformation of the PDMS elastomer due to the imposed pressure restricts how quickly the flow can be stopped before each polymerization event. We have developed a simple model that captures the dependence of the time required to stop the flow on geometric parameters such as the height, length and width of the microchannel, as well as on the externally imposed pressure. Further, we show that SFL proves to be superior to CFL even for the synthesis of chemically anisotropic particles with sharp interfaces between distinct sections.  相似文献   

15.
Surface-induced droplet fusion in microfluidic devices   总被引:1,自引:0,他引:1  
Here we demonstrate a new method for droplet fusion based on a surface energy pattern on the walls of a microfluidic device, that does not require active elements nor accurate synchronization of the droplets.  相似文献   

16.
Niu X  Gulati S  Edel JB  deMello AJ 《Lab on a chip》2008,8(11):1837-1841
A novel method is presented for controllably merging aqueous microdroplets within segmented flow microfluidic devices. Our approach involves exploiting the difference in hydrodynamic resistance of the continuous phase and the surface tension of the discrete phase through the use of passive structures contained within a microfluidic channel. Rows of pillars separated by distances smaller than the representative droplet dimension are installed within the fluidic network and define passive merging elements or chambers. Initial experiments demonstrate that such a merging element can controllably adjust the distance between adjacent droplets. In a typical scenario, a droplet will enter the chamber, slow down and stop. It will wait and then merge with the succeeding droplets until the surface tension is overwhelmed by the hydraulic pressure. We show that such a merging process is independent of the inter-droplet separation but rather dependent on the droplet size. Moreover, the number of droplets that can be merged at any time is also dependent on the mass flow rate and volume ratio between the droplets and the merging chamber. Finally, we note that the merging of droplet interfaces occurs within both compressing and the decompressing regimes.  相似文献   

17.
A 3D paper-based microfluidic device has been developed for colorimetric determination of selected heavy metals in water samples by stacking layers of wax patterned paper and double-sided adhesive tape. It has the capability of wicking fluids and distributing microliter volumes of samples from single inlet into affrays of detection zones without external pumps, thus a range of metal assays can be simply and inexpensively performed. We demonstrate a prototype of four sample inlets for up to four heavy metal assays each, with detection limits as follows: Cu (II)?=?0.29 ppm, Ni(II)?=?0.33 ppm, Cd (II)?=?0.19 ppm, and Cr (VI)?=?0.35 ppm, which provided quantitative data that were in agreement with values gained from atomic absorption. It has the ability to identify these four metals in mixtures and is immune to interferences from either nontoxic metal ions such as Na(I) and K(I) or components found in reservoir or beach water. With the incorporation of a portable detector, a camera mobile phone, this 3D paper-based microfluidic device should be useful as a simple, rapid, and on-site screening approach of heavy metals in aquatic environments.
Figure
?  相似文献   

18.
An extremely rapid tool for continuous flow synthetic process optimisation is described. A microfluidic reaction system operating in continuous flow is used in conjunction with confocal Raman microscopy to afford rapid molecule synthesis and product quantitation. Accordingly, the approach allows for rapid reaction optimisation within a continuous flow system. Specifically, the catalytic oxidation of isopropyl alcohol (IPA) to acetone using tetra-N-propylammonium perruthanate (TPAP)/N-methylmorpholine N-oxide (NMO) in a radial interdigitated micromixer is studied as a model reaction system. The composition of the reaction effluent can be determined with great facility and information relating to catalyst/co-oxidant ratios, catalyst turnovers and reaction endpoints extracted. Specifically, variation of catalyst and co-oxidant volumetric flow rates between 0 and 50 microL min(-1) is used to vary reactant concentrations, define reaction residence times and control product conversions between 0 and 100%. The rapid nature of the system allows chemical information to be gathered and utilised on a sub-minute timescale.  相似文献   

19.
Fourier Transform Raman spectroscopy was used as an on-line sensor in order to monitor high solids content (50 wt%) n-BA/MMA emulsion copolymerization reactions. Due to the similarity of the chemical structure of the monomers, no separate bands could be detected for each monomer, and therefore a multivariate calibration technique was required (Partial Least Squares Regression, PLSR). Using experimental data from several semi-batch reactions independent PLSR models were built for the solids content, cumulative copolymer composition and unreacted amounts of n-BA and MMA. Those models were experimentally validated by monitoring reactions not used for calibration. It is demonstrated that FT-Raman spectroscopy can be successfully applied to on-line monitor emulsion polymerization reactors. This technique also shows a high potential for process control purposes because independent information about several molecular properties can be obtained from a single apparatus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号