首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
建立了固液两相流中更一般的K-ε双方程湍流模式。模化了固相和液相的连续方程、动量方程及K方程和ε方程。该湍流模型考虑了固液两相间速度的滑移,颗粒间的作用及相间作用。使用本文所建立的湍流模型,数值预测了一管湍流中的沙水混合流动,其预测结果与实验结果比较一致。  相似文献   

2.
建立了固液两相流中更一般的K-ε双方程湍流模式.模化了固相和液相的连续方程、动量方程及K方程和ε方程.该湍流模型考虑了固液两相间速度的滑移,颗粒间的作用及相间作用.使用本文所建立的湍流模型,数值预测了一管湍流中的沙水混合流动,其预测结果与实验结果比较一致.  相似文献   

3.
K-ε模型在复杂管流中的模拟计算   总被引:1,自引:0,他引:1  
本文对复杂管流中的湍流问题采用了k-ε模型进行模拟计算.对于复杂边界问题采用了阶梯型网格近似,取得了较好的结果.文中给出了两例复杂管流的计算算例,说明了K-ε模型具有很强的适应性和稳定性.  相似文献   

4.
运用湍流k-ε模式及实测壁面函数分别模拟牛顿流体(清水)及一种非牛顿流体(聚合物稀薄减阻溶液)流经180°弯曲方管的湍性流动,取得与实测速度分布吻合较好的结果.对于湍流模式对存在大涡的复杂流动的适应性,根据计算和试验结果进行了分析和讨论.  相似文献   

5.
本文给出了一种适用于复杂湍流流动计算的各向异性、多重尺度的湍流模型(MS/ASM).这种模型对雷诺应力进行直接的模拟,并可模拟湍流流动的多重尺度影响.对自由应力流动、旋转流动和回流的湍流流动的计算表明,它比常用的单重尺度的k-ε模型有明显的改进.由于计算机工作量增加得不多,所以它在工程计算中,具有广泛的应用前景.  相似文献   

6.
本文给出积分变质量非线性非完整系统相对于非惯性系动力学方程的梯度法,单分量法和场方法。首先,将这类问题的动力学方程表示为正则形式和场方程形式;然后,分别用梯度法,单分量法和场方法积分相应常质量完整系统相对于惯性系的动力学方程,并加上非完整约束对初始条件的限制而得到变质量非线性非完整系统相对于非惯性系动力学方程的解。  相似文献   

7.
首先定性地分析了流线曲率效应对流场湍流结构的影响,然后以U型槽道流为典型算例,对多种湍流模型进行了评估.评估的模型包括:线性涡粘性模型,二阶和三阶非线性涡粘性模型,二阶显式代数应力模型和Reynolds应力模型.评估结果表明,性能良好的三阶非线性涡粘性模型,如黄于宁等人发展的HM模型以及CLS模型,可以较好地描述流线的曲率效应对湍流结构的影响,如凸曲率作用下内壁附近湍流强度的衰减和凹曲率作用下外壁附近湍流的增强,并且较好地确定了管道下游的分离点位置和分离泡长度,其预测的结果和实验符合较好,与Reynolds力模型的结果十分接近,因此可以较好地应用于具有曲率效应的工程湍流的计算.  相似文献   

8.
高寒草甸地区陆面过程观测及耦合模式研究   总被引:1,自引:1,他引:0  
对海北高寒草甸地区水热传输过程进行了系统观测,特别考虑了叶片气孔为非饱和水汽条件下的交换情况,结合修正的根系吸水公式,发展了一个多层陆气耦合模式.利用该模式对中国科学院海北高寒草甸生态试验站地区矮嵩草草甸陆气水热交换进行了数值模拟,分析了湍流交换的物理过程,给出了沿高度分布的各物理量.模拟结果与实测值吻合较好.  相似文献   

9.
本文针对宽浅型水域,对三维湍流时均方程组逐项进行深度平均,推导出包含自由水面和地形影响的深度平均流动控制方程组.本文还同时获得了深度平均形式的k-ε湍流模型方程组.因计入了水流的三维效应,该模型称为完全深度平均模型.考虑到天然水域几何边界复杂,本文运用较简便的方法,将上述模型方程组交换至正交坐标系下.所得控制方程组可以直接运用于对实际问题的数值模拟.  相似文献   

10.
基于k-ε湍流模型和Eddy-dissipation燃烧模型,采用同位网格SIMPLE算法,对充满甲烷-氧气预混气的带导管柱形泄爆容器向空气中泄爆的情形进行了数值模拟.根据计算结果,分析了泄爆后外流场中可燃云团、火焰和压力的变化过程.结果表明,外部爆炸是因射流火焰点燃高压区中的可燃云团,从而引起的剧烈湍流燃烧所致.同时还讨论了外流场湍流和涡量的分布特征.射流火焰进入外部可燃云团后,湍流主要分布在平均动能梯度较大的区域,而不在火焰阵面上.涡量分布主要受斜压效应的影响,在压力和密度梯度斜交区域,其值较大.  相似文献   

11.
Mac-Millan方程的推广   总被引:2,自引:2,他引:0  
将动力学原理及Appell-Четаев定义推广到非惯性系,由此导出非惯性系中的非线性非完整系统的Mac-Millan方程.  相似文献   

12.
The present paper introduces a new interfacial marker-level set method (IMLS) which is coupled with the Reynolds averaged Navier–Stokes (RANS) equations to predict the turbulence-induced interfacial instability of two-phase flow with moving interface. The governing RANS equations for time-dependent, axisymmetric and incompressible two-phase flow are described in both phases and solved separately using the control volume approach on structured cell-centered collocated grids. The transition from one phase to another is performed through a consistent balance of kinematic and dynamic conditions on the interface separating the two phases. The topological changes of the interface are predicted by applying the level set approach. By fitting a number of interfacial markers on the intersection points of the computational grids with the interface, the interfacial stresses and consequently, the interfacial driving forces are easily estimated. Moreover, the normal interface velocity, calculated at the interfacial markers positions, can be extended to the higher dimensional level set function and used for the interface advection process. The performance of linear and non-linear two-equation kε turbulence models is investigated in the context of the considered two-phase flow impinging problem, where a turbulent gas jet impinging on a free liquid surface. The numerical results obtained are evaluated through the comparison with the available experimental and analytical data. The nonlinear turbulence model showed superiority in predicting the interface deformation resulting from turbulent normal stresses. However, both linear and nonlinear turbulence models showed a similar behavior in predicting the interface deformation due to turbulent tangential stresses. In general, the developed IMLS numerical method showed a remarkable capability in predicting the dynamics of the considered two-phase immiscible flow problems and therefore it can be applied to quite a number of interface stability problems.  相似文献   

13.
Chaos and unpredictability in some classical dynamic systems are eliminated by referring the governing equation to a specially selected rapidly oscillating (non-inertial) frame of reference in which the stabilization effect is caused by inertia forces. The resulting motion is found as a sum of smooth and non-smooth (rapidly oscillating) parts. The solution is stable and reproducible in the sense that small changes in initial conditions lead to small changes in both smooth and non-smooth components. In this interpretation, conceptually the closure problem in turbulence is reduced to the problem of finding such a frame of reference where the high Reynolds number instability is eliminated. The usefulness of the approach is illustrated by examples.  相似文献   

14.
Based on the stress transport model, a rate-dependent algebraic expression for the Reynolds stress tensor is developed. It is shown that the new model includes the normal stress effects and exhibits viscoelastic behavior. Furthermore, it is compatible with recently developed improved models of turbulence. The model is also consistent with the limiting behavior of turbulence in the inertial sublayer and is capable of predicting secondary flows in noncircular ducts. The TEACH code is modified according to the requirements of the rate-dependent model and is used to predict turbulent flow fields in a channel and behind a backward-facing step. The predicted results are compared with the available experimental data and those obtained from the standard k-ε and algebraic stress models. It is shown that the predictions of the new model are in better agreements with the experimental data.  相似文献   

15.
在水槽中测量了中等雷诺数下平板湍流边界层中的瞬时流向速度的时间序列,验证了Benzi提出的推广的自相似标度律,用子波变换将壁湍流脉动速度分解为多尺度湍涡结构的速度,研究了每一个尺度的湍涡速度结构函数的推广的自相似标度律。主要结论如下:湍流的统计性质是自相似的,这不仅适用于充分发展湍流,而且适用于中等雷诺数和低雷诺数湍流,而且具有相同的标度指数;推广的自相似标度律的适用的尺度范围远远大于惯性子区的范围,可以一直延伸至耗散区的尺度范围;推广的自相似标度律不仅适用于均匀各向同性湍流,也适用于剪切湍流如边界层湍流。  相似文献   

16.
We reconsider the problem of shear free turbulent diffusion in a rotating frame, rotating about x1. Shear free turbulence is generated at a vibrating grid in the x2x3 plane and diffuses away from the grid in x1 direction. An important property of this flow case is that there is no mean flow‐velocity. With the help of Lie‐group methods Reynolds‐stress transport models can be analyzed for this kind of flow in a rotating frame. From the analysis it can be found, that the turbulent diffusion only influences a finite domain. Implicating this solution in the model equations shows that even fully nonlinear Reynolds‐stress transport models (non‐linear in the Reynolds‐stresses for the pressure‐strain model) are insensitive to rotation for this type of flow. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
《Applied Mathematical Modelling》2014,38(17-18):4226-4237
Strong nonlinear or very fast phenomena such as mixing, coalescence and breakup in chemical engineering processes, are not correctly described using average turbulence properties. Since these phenomena are modeled by the interaction of fluid particles with single or paired vortices, distribution of the properties of individual turbulent vortices should be studied and understood. In this paper, statistical analysis of turbulent vortices was performed using a novel vortex tracking algorithm. The vortices were identified using the normalized Q-criterion with extended volumes calculated using the Biot–Savart law in order to capture most of the coherent structure related to each vortex. This new and fast algorithm makes it possible to estimate the volume of all resolved vortices. Turbulence was modeled using large-eddy simulation with the dynamic Smagorinsky–Lilly subgrid scale model for different Reynolds numbers. Number density of turbulent vortices were quantified and compared with different models. It is concluded that the calculated number densities for vortices in the inertial subrange and also for the larger scales are in very good agreement with the models proposed by Batchelor and Martinez-Bazán. Moreover, the associated enstrophy within the same size of coherent structures is quantified and its distribution is compared to models for distribution of turbulent kinetic energy. The associated enstrophy within the same size of coherent structures has a wide distribution that is normal distributed in the logarithmic scale.  相似文献   

18.
Turbulent, bubble plumes are investigated numerically using the commercial, Computational Fluid Dynamics (CFD) code CFX-F3D. A six-equation, two-fluid model approach is adopted, in which interphase momentum exchange models include buoyancy, drag, added mass, lift and turbulent dispersion effects. Particular attention is paid to turbulence modelling, in which generation and dissipation resulting from interaction between bubbles and liquid are specifically taken into account within the context of an extended k  ϵ turbulence model. Results from a number of calculations are presented and compared against published, experimental bubble plume data. It is suggested that existing bubble/liquid interaction models for plumes may be grouped into three categories: those which produce lateral bubble spreading, those which diffuse the ambient liquid velocity field, and those which couple the plume to the surrounding liquid and thereby ultimately govern the pool mixing behaviour.  相似文献   

19.
Turbulence modelling is a crucial question in the application of CFD to flows over buildings. The impinging flow and anisotropic nature of the turbulence present severe challenges. This paper presents a comparison of CFD against full-scale results. It differs from previous work which has concentrated on the wind-tunnel scale. In order to better account for the production of turbulent kinetic energy and the anisotropic nature of the turbulence a non-linear k– model is implemented. The results are discussed for different turbulence models and for the comparison of computed results with the measurements from full-scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号