首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of elastic stresses (compressive, tensile) on the magnetic properties of epitaxial GaMnAs layers prepared by laser deposition of solid-state targets in a gas atmosphere on different buffer sublayers (In x Ga1 − x As and In x Ga1 − x P) and substrates (GaAs, InP) has been investigated. It has been established from the investigations of magnetic-field dependences of the Hall resistance that all layers exhibit ferromagnetic properties with the Curie temperature ∼50 K. It has been shown that, in the case of tensile stresses in GaMnAs layers (In x Ga1 − x As and In x Ga1 − x P buffers and InP substrate), the anomalous Hall effect shape demonstrates a predominant orientation of the easy-magnetization axis in the growth direction, unlike the GaMnAs layers prepared on a GaAs substrate (with compressive stresses), which demonstrate the predominance of the component of the magnetization vector in the layer plane.  相似文献   

2.
The band-gap energy and the band line-up of InGaAlAs quaternary compound material on InP are essential information for the theoretical study of physical properties and the design of optoelectronics devices operating in the long-wavelength communication window. The band-gap interpolation of In1−xy Ga x Al y As on InP is known to be a challenging task due to the observed discrepancy of experimental results arising from the bowing effect. Besides, the band line-up results of In1−xy Ga x Al y As on InP based on previously reported models have limited success by far. In this work, we propose an interpolation solution using the single-variable surface bowing estimation interpolation method for the fitting of experimentally measured In1−xy Ga x Al y As band-gap data with various degree of bowing using the same set of input parameters. The suggested solution provides an easier and more physically interpretable way to determine not only lattice matched, but also strained band-gap energy of In1−xy Ga x Al y As on InP based on the experimental results. Interpolated results from this convenient method show a more favourable match to multiple independent experiment data sets measured under different temperature conditions as compared to those obtained from the commonly used weighted-sum approach. On top of that, extended framework of the model-solid theory for the band line-up of In1−xy Ga x Al y As/InP heterostructure is proposed. Our model-solid theory band line-up result using the proposed extended framework has shown an improved accuracy over those without the extension. In contrast to some previously reported works, it is worth noting that the band line-up result based on our proposed extended model-solid theory has also shown to be more accurate than those given by Harrison’s model.  相似文献   

3.
We present a comparison of the band alignment of the Ga1−xInxNyAs1−y active layers on GaAs and InP substrates in the case of conventionally strained and strain-compensated quantum wells. Our calculated results present that the band alignment of the tensile-strained Ga1−xInxNyAs1−y quantum wells on InP substrates is better than than that of the compressively strained Ga1−xInxNyAs1−y quantum wells on GaAs substrates and both substrates provide deeper conduction wells. Therefore, tensile-strained Ga1−xInxNyAs1−y quantum wells with In concentrations of x0.53 on InP substrates can be used safely from the band alignment point of view when TM polarisation is required. Our calculated results also confirm that strain compensation can be used to balance the strain in the well material and it improves especially the band alignment of dilute nitride Ga1−xInxNyAs1−y active layers on GaAs substrates. Our calculations enlighten the intrinsic superiority of N-based lasers and offer the conventionally strained and strain-compensated Ga1−xInxNyAs1−y laser system on GaAs and InP substrates as ideal candidates for high temperature operation.  相似文献   

4.
We report the Raman scattering study of optical vibrations in indium rich In1?xGaxAsyP1?y epitaxial layers grown on InP. We evidence the splitting of the LO line of InP even for very small x and demonstrate it is due to the presence of gallium in the samples. These results lead us to ascribe to In1?xGaxP a somewhat modified two-mode behaviour and to In1?xGaxAsyP1?y a four-mode behaviour.  相似文献   

5.
Ga x In1–x As y P1–y alloys lattice matched to InP substrates are currently used to fabricate optoelectronic and integrated optics devices. To achieve devices with high performances and high fabrication yield, the uniformity and reproducibility of the Ga x In1–x As y P1–y epitaxial layers (composition, thickness, doping, etc.) have become key parameters. These problems have been addressed in the frame of ESPRIT project 2518 and are presented in this paper. Several aspects have been considered starting from the optimization of InP substrates, the MOVPE growth of uniform GalnAsP layers, the material characterization to the validation of material uniformity on passive optical waveguides. Both scanning photoluminescence analysis and waveguide losses measurements performed on 2 inch wafers with a high lateral resolution have shown that high quality uniform GalnAsP layers can be obtained reproducibly on 2 InP substrates using a commercially available LP-MOCVD growth process. In particular, more than 60% of 36 mm long, 3m wide and 100m spaced rib waveguides exhibit losses below 0.8dBcm–1.  相似文献   

6.
A gas source molecular beam epitaxial (GSMBE) growth model considering an intermediate InGaAsP state is presented. This model is very simple and needs only two fitting parameters, k In and k Ga, which are determined experimentally from In1-x Ga x As y P1-y on InP (0<x<0.47 and 0<y<1). At a growth temperature of 480°C, k In and k Ga are 28 and 3 respectively. The temperature dependencies of k In and k Ga are also studied: the fitted activation energies are-30 and 330 meV, respectively. Using these parameters, the model is used to predict the AsH3 and PH3 flow rates for growing In1-x Ga x As y P1-y on GaAs (0.51<x<1 and 0<y<1). The lattice mismatch of all the epilayers grown is within 6×10-4. This indicates that this simple GSMBE model covers the whole compositional range of lattice-matched and coherently strained InGaAsP.  相似文献   

7.
We discuss the design of uncooled lasers which minimizes the change in both threshold current and slope efficiency over the temperature range from–40 to +85°C [1]. To prevent carrier overflow under high-temperature operation, the electron confinement energy is increased by using the Al x Ga y In1–x–y As/InP material system [1] instead of the conventional Ga x In1–x As y P1–y /InP material system. Experimentally, we have investigated strained quantum well lasers with three different barrier layers and confirmed that the static and dynamical performance of the lasers with insufficient carrier confinement degrades severely under high-temperature operation [2]. With an optimized barrier layer, the Al x Ga y In1–x–y As/InP strained quantum well lasers show superior hightemperature performance, such as a small drop of 0.3 dB in slope efficiency when the heat sink temperature changes from 25 to 100°C [3], a maximum CW operation temperature of 185°C [4], a thermally-limited 3-dB bandwidth of 13.9 GHz at 85°C [2], and a mean-time-to-failure of 33 years at 100°C and 10 mW output power [5].  相似文献   

8.
A pseudopotential formalism within the virtual crystal approximation in which the effects of composition disorder are involved is applied to the GaxIn1−xAsyP1−y quaternary alloys in conditions of lattice matching to GaAs, InP and ZnSe substrates so as to predict their energy band gaps. Very good agreement is obtained between the calculated values and the available experimental data for the alloy lattice matched to InP and GaAs. The alloy is found to be a direct-gap semiconductor for all y compositions whatever the lattice matching to the substrates of interest. The (ΓΓ) band-gap ranges and the ionicity character are found to depend considerably on the particular lattice-matched substrates suggesting therefore that, for an appropriate choice of y and the substrate, GaxIn1−xAsyP1−y could provide more diverse opportunities to obtain desired band gaps, which opens up the possibility of discovering new electronic devices with special features and properties.  相似文献   

9.
Summary An attempt is made to study the effective electron mass in quaternary alloys, taking a In1−x Ga x As y P1−y lattice matched to InP, by using the three-band Kane model under different physical conditions,e.g. bulk specimens, magnetic quantization, cross-field configuration, quantum well, electric-field-aided quantum well, magnetic-field-aided quantum well, quantum well under cross fields, quantum well wires, electric-field-aided quantum well wires, magnetic-field-aided quantum well wires and quantum well wires under cross fields by formulating the respective expressions. We have plotted the effective Fermi level mass with various physical variables under different conditions. In the presence of a quantizing magnetic field the effective mass depends on the spin splitting of Landau levels due to the spin-orbit splitting parameter of the valence bands. Under cross-field configuration and the various quantum confined low-dimensional systems, the effective masses depend on the respective quantum numbers in addition to the Fermi energies even for parabolic models because of the inherent features of such systems. In addition, the corresponding results for relatively wide-gap materials have also been obtained from our generalized formulations under certain limiting conditions.  相似文献   

10.
In order to give an atomic level understanding of the light emission mechanism and seek In distribution patterns closely related to the elusive electron localization centers, we optimize the crystal structure of zinc blende In x Ga1−x N (0≤x≤1) alloys with different In distributions and investigate their electronic structures using first-principles calculations. Our results show that In x Ga1−x N forms a random alloy, in which several-atom In–N clusters and In–N chains can exist stably with a high concentration due to their small formation energy. These In–N clusters and chains form more easily in zinc blende structure than in wurtzite structure. The band gap of zinc blende In x Ga1−x N alloys insensitively depends on the In distribution. Moreover, we find that both small In–N clusters and straight In–N chains with three or more In atoms, acting as radiative recombination centers, highly localize the electrons of the valence band maximum state and dominate the light emission of Ga-rich In x Ga1−x N alloys. The strains of In x Ga1−x N layers can enhance the electron localization in In x Ga1−x N/GaN strained quantum wells. Our results are in good agreement with experiments and other calculations.  相似文献   

11.
Double-and triple-crystal diffractometry have been used to study structural perfection of a ∼1 μm-thick Ga1−x InxSb1−y Asy epitaxial film (x=0.9, y=0.8) on GaSb. It is shown that scattering from samples of this system can be divided into coherent and diffuse. The arrangement of reciprocal-lattice points of the film and substrate in the two-dimensional intensity distribution for asymmetrical reflections argues for the absence of elastic-strain relaxation. No dislocation networks are formed, and the diffuse scattering is produced by Coulomb-type defects. Localization of diffuse scattering in reciprocal space suggests that these defects reside in the epitaxial film. The diffuse-scattering distribution in asymmetrical reflections is shown to be anomalous; namely, it extends in a direction parallel to the surface and is split into two maxima. Schemes have been proposed and realized for measuring integral distributions of diffracted intensity along the surface and perpendicular to it, and their potential for studying diffuse scattering from defects is explored. Fiz. Tverd. Tela (St. Petersburg) 39, 1188–1193 (July 1997)  相似文献   

12.
A multi-wavelength Quantum well (QW) waveguide photodiode (PD) have been designed for Coarse Wavelength Division Multiplexing (CWDM) systems in which spatial tailoring of the bandgap with post growth F implanted QW intermixing of InGaAsP/InP multi QWs for the integration have been considered. Two separate structures with different composition but same well widths are necessary to detect all CWDM wavelengths. For In0.5995Ga0.4005As0.8521P0.1479 well there is a 12 channel coverage from 1,270 to 1,490 nm and for the In0.5540Ga0.4460As0.9489P0.0511 well the 14 channel spans from 1,350 to 1,610 nm. A carrier tunneling time of 20 ps along with the transit time limited bandwidth of 86 GHz gives a 3 dB bandwidth of 41 GHz by optimizing the i-MQW thickness and dopant concentration of the different layers of the waveguide. A maximum efficiency of 22% with insertion loss of 0.4–23 dB has been obtained.  相似文献   

13.
Highly strained quantum cascade laser (QCL) and quantum well infrared photodetector (QWIPs) structures based on InxGa(1−x)As−InyAl(1−y)As (x>0.8,y<0.3) layers have been grown by molecular beam epitaxy. Conditions of exact stoichiometric growth were used at a temperature of 420°C to produce structures that are suitable for both emission and detection in the 2–5 μm mid-infrared regime. High structural integrity, as assessed by double crystal X-ray diffraction, room temperature photoluminescence and electrical characteristics were observed. Strong room temperature intersubband absorption in highly tensile strained and strain-compensated In0.84Ga0.16As/AlAs/In0.52Al0.48As double barrier quantum wells grown on InP substrates is demonstrated. Γ–Γ intersubband transitions have been observed across a wide range of the mid-infrared spectrum (2–7 μm) in three structures of differing In0.84Ga0.16As well width (30, 45, and 80 Å). We demonstrate short-wavelength IR, intersubband operation in both detection and emission for application in QC and QWIP structures. By pushing the InGaAs–InAlAs system to its ultimate limit, we have obtained the highest band offsets that are theoretically possible in this system both for the Γ–Γ bands and the Γ–X bands, thereby opening up the way for both high power and high efficiency coupled with short-wavelength operation at room temperature. The versatility of this material system and technique in covering a wide range of the infrared spectrum is thus demonstrated.  相似文献   

14.
Single-junction,lattice-mismatched In0.69Ga0.31As thermophotovoltaic(TPV) devices each with a bandgap of 0.6 eV are grown on InP substrate by metal-organic chemical vapour deposition(MOCVD).Compositionally undulating stepgraded InAsyP1-y buffer layers with a lattice mismatch of ~1.2% are used to mitigate the effect of lattice mismatch between the device layers and the InP substrate.With an optimized buffer thickness,the In0.69Ga0.31As active layers grown on the buffer display a high crystal quality with no measurable tetragonal distortion.High-performance single-junction devices are demonstrated,with an open-circuit voltage of 0.215 V and a photovoltaic conversion efficiency of 6.9% at a short-circuit current density of 47.6 mA/cm2,which are measured under the standard solar simulator of air mass 1.5-global(AM 1.5 G).  相似文献   

15.
The effect of strain accumulation in the InAs/In x Ga1−x As quantum dots (QDs) system was studied in this work. It was found that strain in the In x Ga1−x As layer accumulation in the QD layer. This effect resulted in a dramatic reduction of growth mode transition thickness of the QD layer. For InAs/In0.25Ga0.75As QDs, critical thickness is measured to be as low as 1.08 ML. The experimental results in this work highlight the importance of strain accumulation in the design and fabrication of QD-based devices with metamorphic buffer layer involved.  相似文献   

16.
A simple sp3 hybrid-orbital model for predicting valence-band discontinuities is proposed and applied to quaternaries. The effects of anion and cation disorder are taken into account explicitly within the coherent-potential approximation. Results for In1?xGaxP1?yAsy, In1?xGaxAs1?ySby, Ga1?xAlxAs1?ySby and In1?xAlxP1?ySby lattice-matched to some binaries are shown. The broadening of valence-band-top levels due to alloy scattering is found negligible.  相似文献   

17.
We investigate the Einstein relation for the diffusivity-mobility ratio (DMR) for n-i-p-i and the microstructures of nonlinear optical compounds on the basis of a newly formulated electron dispersion law. The corresponding results for III-V, ternary and quaternary materials form a special case of our generalized analysis. The respective DMRs for II-VI, IV-VI and stressed materials have been studied. It has been found that taking CdGeAs2, Cd3As2, InAs, InSb, Hg1−xCdxTe, In1−xGaxAsyP1−y lattices matched to InP, CdS, PbTe, PbSnTe and Pb1−xSnxSe and stressed InSb as examples that the DMR increases with increasing electron concentration in various manners with different numerical magnitudes which reflect the different signatures of the n-i-p-i systems and the corresponding microstructures. We have suggested an experimental method of determining the DMR in this case and the present simplified analysis is in agreement with the suggested relationship. In addition, our results find three applications in the field of quantum effect devices.  相似文献   

18.
Reflection and transmission spectra of liquid phase-grown Ga0.08In0.92As0.18P0.82 layers deposited on (100) - oriented InP single crystals were experimentally investigated. From a comparison of the known bandstructure of InP, assignments of the observed optical transitions in the quaternary alloy have been made.  相似文献   

19.
Summary Thek-conserving selection rule in the electron-hole recombination is investigated by intensity-dependent photoluminescence measurements inn-type modulation-doped Ga x In1−x As−Al y In1−y As single quantum wells intentionally doped with Be acceptors in the well centre. Thek-non-conserving recombination process involves electrons with momentum up to the Fermi edge and holes localized on the Be acceptors. The transition from a one-component electron plasma to a two-component electron-hole plasma is studied by comparing the experimental results with theoretical line shape models. The density-dependent band gap renormalization is determined for the one-component and the two-component electron-hole plasma. The obtained results are found to agree well with recent theoretical calculations.  相似文献   

20.
The Mg- and In-doped zinc oxide (Mg x Zn1−x O, In y Zn1−y O) nanoparticles were successfully prepared by flame spray synthesis method. According to the results obtained from X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV–Vis absorption spectra, it was concluded that the Mg or In doping induced the lattice constants to change to some extent; the band gap of Mg x Zn1−x O also increased with respect to the decreasing band gap of In y Zn1−y O. Moreover, the strong UV emission and weak visible emission were investigated by photoluminescence spectra, while the mechanisms of Mg or In doping on PL spectra have been discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号