首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A field experiment was conducted on alluvial soil with sandy loam texture, in a complete randomized design, to determine the compaction of sub-soil layers due to different passes of a test tractor with varying normal loads. The selected normal loads were 4.40, 6.40 and 8.40 kN and the number of passes 1, 6, 11 and 16. The bulk density and cone penetration resistance were measured to determine the compaction at 10 equal intervals of 5 cm down the surface. The observations were used to validate a simulation model on sub-soil compaction due to multiple passes of tractor in controlled conditions. The bulk density and penetration resistance in 0–15 cm depth zone continuously increased up to 16 passes of the test tractor, and more at higher normal loads. The compaction was less in different sub-soil layers at lower levels of loads. The impact of higher loads and larger number of passes on compaction was more effective in the soil depth less than 30 cm; for example the normal load of 8.40 kN caused the maximum bulk density of 1.53 Mg/m3 after 16 passes. In 30–45 cm depth layer also, the penetration resistance increased with the increase in loads and number of passes but to a lesser extent which further decreased in the subsoil layers below 45 cm. Overall, the study variables viz. normal load on tractor and number of passes influenced the bulk density and soil penetration resistance in soil depth in the range of 0–45 cm at 1% level of significance. However, beyond 45 cm soil depth, the influence was not significant. The R2 calculated from observed and predicted values with respect to regression equations for bulk density and penetration resistance were 0.7038 and 0.76, respectively.  相似文献   

2.
Twenty-five treatments consisting of three vehicle contact pressures, 62, 41 and 31 kPa (0.63, 0.42, 0.32 kg/cm2), four numbers of tractor passes (1, 5, 10, 15,) before and after seeding groups, and a control of zero traffic were used to study the effect of soil compaction on corn plant root growth and distribution in a Ste. Rodalie clay soil. The average dry bulk density values for 0–20 cm depths measured during the season varied from a minimum of 0.89 g/cm3 to a maximum of 1.12 g/cm3 depending on the severity of the treatment. Root distribution maps were obtained for all the treatments by field measurements coupled with root washing methods. An average root density of 5.7 mg/g of soil in an uncompacted control plot was reduced to less than 2 mg/g in a plot with 15 passes of 0.63 kg/cm2 contact pressure. Soil penetration resistance values in various plots were compared, and a statistical model was obtained in terms of the traffic treatments, soil moisture content and depth. Yield reductions and penetration resistance were compared to root distrubution density results.  相似文献   

3.
To determine and compare the differences in soil water suction between uncropped and cropped plots, a 52-plot experiment was used. Three average tyre to soil contact pressures of 31, 41 and 62 kPa as well as four numbers of machines passes (1, 5, 10 and 15) and control plots of zero traffic were used as pre-seeding machinery compaction treatments for the investigation. Soil dry bulk density, soil moisture content, soil suction, rainfall, water table depth and corn yield were all measured. The results showed that, with increasing tyre contact pressure, there was a corresponding increase in soil suction during the growing season in both uncropped and cropped plots. A family of curves was drawn for soil suction versus tyre contact pressure for different numbers of days and also for soil suction versus volumetric water content at varying contact pressures and times of the season. Growth performance of corn plants was best in moderately compacted plots. Dry bulk density and penetrometer resistance were related to traffic treatments.  相似文献   

4.
This four-year experiment was conducted in north-west Slavonia (agricultural area of Croatia) to evaluate the effects of different tillage systems on compaction of silty loam soil (Albic Luvisol). The compared tillage systems were: (1) conventional tillage (CT), (2) conservation tillage (CM), (3) no-tillage system (NT), and the crop rotation was corn (Zea mays L.) – winter wheat (Triticum aestivum L.) – corn – winter wheat. For detecting the soil compaction, bulk density and penetration resistance were measured during the growing seasons. In all seasons and tillage systems, the bulk density and penetration resistance increased with depth and the greatest increase from surface to the deepest layer in average was observed at CT system. The bulk density and penetration resistance increased at all tillage systems during the experiment, but the greatest increase was also observed at CT system. The greatest bulk density (1.66 Mg m−3) and the greatest increase of 6.4% were observed at CT system in the layer 30–35 cm. In the first season, the bulk density was the greatest at NT system, but during the experiment the lowest average increase of 1.9% was observed at this system. The greatest penetration resistance of all measurements (5.9 MPa) was observed in the last season at CT system in depth of 40 cm. The lowest average increase of penetration resistance 11.4% was also observed at NT system. The highest yield of corn in the first season was achieved with CT system while in other seasons the highest yield of winter wheat and corn was achieved with CM system.  相似文献   

5.
Cylindrical soil probes measuring 300 mm in diameter by 300 mm in height were prepared in the laboratory using samples extracted from a well drained loamy soil (FAO classification: Vertic Luvisol). These probes were compacted at different moisture contents [3, 6, 9, 12, 15 and 18 (% w/w)] and using different compaction energies (9.81, 49.05, 98.1 and 981 J). The soil penetration resistance was determined by means of the ASAE 129 mm2 base area cone and seven other different cones with base sizes of 175, 144, 124, 98, 74, 39 and 26 mm2. The variability of the penetration resistance measurements increased as the size of the cone decreased. Nevertheless, the penetration resistance values proved to be independent of the cone used, as long as the size of the latter was equal to or greater than 98 mm2. This confirms the possibility of using cones with areas smaller than the ASAE standard when measurements are to be carried out in dry soils with high levels of mechanical resistance. The experimental data were used to develop an empirical model, a linear additive model on a log–log plane, capable of estimating soil bulk density depending on soil penetration resistance, soil moisture content and depth. This model has provided good results under field conditions and has allowed soil bulk density profiles and accumulated water profiles to be accurately estimated.  相似文献   

6.
Effect of wetting and drying on soil physical properties   总被引:3,自引:0,他引:3  
Agricultural soils are subject to seasonal wetting and drying cycles. Effect of drying stress, as influenced by one cycle of wetting and drying, on physical properties of a clay–loam soil was investigated in the laboratory. The physical properties studied were soil bulk density, cone penetration resistance, shear strength, adhesion and aggregate size and stability. Three drying stress treatments were made by wetting air-dried soil of initial moisture content of 12% (on dry weight basis) to three different higher moisture contents, namely 27, 33 and 40%, and then drying each of them back to their original moisture content of 12%. Thus, the soil was subjected to three different degrees of drying stress. The results showed that the soil strength indicated by cone penetration resistance and cohesion, and soil aggregate size, increased with the degree of drying stress. However, the soil bulk density did not change significantly with the drying stress.  相似文献   

7.
Esperiements were conducted during the summer of 1979 in which field plots oon s Ste. Rosalie clay soil and a Ste. Amable sandy loam soil were subjected to different levels of compaction by machinery, and subsequently treated by moldboard plowing and discing, chiselling and subsoiling by a winged tool. A silage corn crop was grown on all plots and measurements were made of soil bulk densities, penetration resistance of soils and plant yields. The results indicated that the compaction of the soil, if not subsequently loosened by a tillage operation, caused a marked reduction in plant yields. A nnarrow range of dry bulk density produced the optimum silage corn yields in the two experimental soils. The soil densities in this range were obtained by any of the three tillage treatments, as well as by the rototiller treatment, without machinery traffic.  相似文献   

8.
Compaction effects and soil stresses were examined for four tractor tyres under three inflation pressures: 67, 100 and 150% of the recommended pressure. The four tyres were 18.4 R 38, 520/70 R 38, 600/65 R 38 and 650/60-38 and they carried a wheel load of 2590 kg. The 650/60-38 was a bias-ply tyre while the other three were radial tyres. Increased inflation pressure significantly increased all measured parameters: rut depth, penetration resistance and soil stress at 20 and 40 cm depth. The 18.4 R 38 caused a greater rut depth and penetration resistance than the other tyres, which did not differ significantly from each other. The soil stress was highest for the 18.4 R 38, followed by the 650/60-38. The low-profile tyres decreased compaction compared with the 18.4–38 tyre, mainly by allowing a lower inflation pressure. The use of low-profile tyres did not reduce compaction if not used at a lower inflation pressure. The bias-ply tyre caused a higher stress in the soil than the radial tyres when used with the same inflation pressure, but the compaction effects in terms of rut depth and penetration resistance were not greater for this tyre than for the radial low-profile tyres.  相似文献   

9.
Military training commonly results in land degradation, but protocols for assessing and predicting long-term environmental impact are lacking. An ability to assess the impact of repeated disturbance and subsequent recovery is needed to balance training requirements against environmental quality. To develop methodology for assessing soil quality, a study evaluating disturbance resulting from tank maneuvers was initiated on Fort Riley Military Installation, Kansas. The objectives were to identify and quantify soil-quality indicators on two soil types exposed to controlled tank traffic. We examined physical, chemical, and biotic indicators after treatments were applied during wet and dry soil conditions. A randomized complete-block design, with three blocks per soil type and three treatments per block, was used. Treatments consisted of disturbance created by a 63-ton M1A1 tank making five passes in a figure-8 pattern during either dry or wet soil conditions. The M1A1 was operated at a speed of approximately 8 km/h. Control plots received no tank traffic. Soil-quality indicators evaluated were soil compaction, soil penetration resistance, rut depth, soil bulk density, soil texture, soil chemical composition, plant biomass, soil microbial diversity, and nematode and earthworm taxa. Soil-quality indicators were sampled within one week after tank disturbance. Preliminary data indicate soil-texture-dependent treatment effects (p  0.05) for bulk density and porosity. Bulk density increased and porosity decreased on trafficked areas, in the silt loam soil, but showed no change in the silty clay loam soil. Disturbance during wet soil conditions raised penetrometer resistance and gravimetric water content more than disturbance during dry soil conditions (p  0.05). A significant difference in disturbance was measured between the outside and inside portion of the same track (p  0.01 and 0.001, respectively). The outside track caused the greatest amount of disturbance, as measured by the height of the disturbed soil ridge above the track bed. Tank disturbance significantly reduced total vegetative biomass (p  0.05) compared with that of un-trafficked areas. Disturbance under wet soil conditions significantly reduced grass biomass (p = 0.040), whereas disturbance under dry soil conditions significantly reduced forb biomass (p = 0.0247) compared to un-trafficked areas. Total earthworm abundance (p = 0.011) was reduced by 82% when disturbance occurred during wet soil conditions regardless of soil type.  相似文献   

10.
Soil compaction can occur due to machine traffic and is an indicator of soil physical structure degradation. For this study 3 strain transducers with a maximum displacement of 5 cm were used to measure soil compaction under the rear tire of MF285 tractor. In first series of experiments, the effect of tractor traffic was investigated using displacement transducers and cylindrical cores. For the second series, only strain transducers were used to evaluate the effect of moisture levels of 11%, 16% and 22%, tractor velocities of 1, 3 and 5 km/h, and three depths of 20, 30 and 40 cm on soil compaction, and soil behavior during the compaction process was investigated. Results showed that no significant difference was found between the two methods of measuring the bulk density. The three main factors were significant on soil compaction at a probability level of 1%. The mutual binary effect of moisture and depth was significant at 1%, and the interaction of moisture, velocity, and depth were significant at 5%. The soil was compressed in the vertical direction and elongated in the lateral direction. In the longitudinal direction, the soil was initially compressed by the approaching tractor, then elongated, and ultimately compressed again.  相似文献   

11.
Previous studies at Yakima Training Center (YTC), in Washington State, suggest freeze-thaw (FT) cycles can ameliorate soil compacted by tracked military vehicles [J. Terramechanics 38 (2001) 133]. However, we know little about the short-term effects of soil freezing over a single winter. We measured bulk density (BD), soil penetration resistance (SPR), and steady-state runoff rates in soil newly tracked by an Abrams tank and in uncompacted soil, before and after a single winter at YTC. We similarly measured BD, SPR and saturated hydraulic conductivity (kfs) in simulated tank tracks at another site near Lind Washington. Average BD was significantly greater in tank ruts at YTC and in simulated tracks at the Lind site than in uncompacted soil soon after tracking and did not change significantly during the winter of 1997–1998. Measurements of SPR were strongly influenced by soil moisture. When soil was moist or tracks were newly formed, SPR was significantly higher in tank ruts than in uncompacted soil from the surface to a depth of about 10–15 cm. The greatest average SPR in compacted soil was observed between 4 and 6 cm depth. We observed less difference in SPR between tank ruts and uncompacted soil near-surface at YTC as the time after trafficking increased. We observed highest SPR ratios (compacted rut:undisturbed) in fresh tracks near the surface, with lower ratios associated with increasing track age or soil depth, indicating that some recovery had occurred at YTC near-surface. However, we did not observe a similar over-winter change in SPR profiles at the Lind site. Rainfall simulator data from YTC showed higher steady-state runoff rates in tank ruts than over uncompacted soil both before and after winter. However, more time was required to reach steady-state flow in tank ruts and the proportion of runoff was slightly lower in May 1998 than in August 1997. At the Lind site, kfs was lower in newly compacted soil than in one-year old compacted soil or uncompacted soil. Our data suggest that indices of water infiltration such as steady-state runoff rates or kfs, are more sensitive indicators of soil recovery after compaction than are BD or SPR.  相似文献   

12.
A 52 plot experiment was performed during the growing season of 1977 in a Ste. Rosalie clay soil, using a randomized complete-block design with 13 treatments of machinery traffic within each of four blocks. Three vehicle contact pressures, four numbers of tractor passes, and a control of zero traffic were used to relate the growth and yield variables to wheel traffic and the resulting soil compaction. The number of days required for (a) plant emergence, (b) tasselling, and (c) silking were minimum in moderately compacted plots. The plant growth rate monitored at 41, 54, 68, and 105 days from the seeding time was different from plot to plot. Growth models at different times of the season were derived in terms of the wheel traffic variables, and plant and ear moisture content variation with traffic treatment was investigated. Yield and ear yield increased with increases in machine contact pressure and passes reaching a peak around 500 kPa and dropped off for further increases. The reduction in yield was over 35% in some cases, suggesting that careful traffic planning is essential to obtain better production in agricultural fields. Prediction models were obtained for all the plant growth characteristics in terms of traffic variables. A relation for yield in terms of soil bulk density was established for a dry season.  相似文献   

13.
We monitored two experimental areas at the Yakima Training Center (YTC) in central Washington to measure changes to M1A2 Abrams (M1) tank-rut surface geometry and in- and out-of-rut saturated hydraulic conductivity (Kfs), soil penetration resistance (SPR) and soil bulk density (BD). Profile-meter data show that rut cross-sectional profiles smoothed significantly and that turning ruts did so more than straight ruts. Rut edges were zones of erosion and sidewall bases were zones of deposition. Kfs values were similar in and out of ruts formed on soil with 0–5% moisture by volume, but were lower in ruts formed on soil with about 15% water. Mean SPR was similar in and out of ruts from 0- to 5-cm depth, increased to 2 MPa outside ruts and 4 MPa inside ruts at 10- to 15-cm depth, and decreased by 10–38% outside ruts and by 39–48% inside ruts at the 30-cm depth. Soil BD was similar in and out of ruts from 0- to 2.5-cm depth, and below 2.5 cm, it was generally higher in ruts formed on moist soil with highest values between 10- and 20-cm depth. Conversely, BD in ruts formed on dry soil was similar to out-of-rut BD at all depths. This information is important for determining impacts of tank ruts on water infiltration and soil erosion and for modifying the Revised Universal Soil Loss Equation (RUSLE) and the Water Erosion Prediction Project (WEPP) models to more accurately predict soil losses on army training lands.  相似文献   

14.
Enhancement of the potential root growth volume is the main objective of farmers when they establish a conventional tillage system. Therefore, the main function of primary tillage is to increase soil’s structural macroporosity. In spite of this, during secondary tillage operations on these freshly tilled soils, the traffic on seedbeds causes significant increases in soil compaction. The aim of this paper was to quantify soil compaction induced by tractor traffic on a recently tilled non consolidated soil, to match ballast and tyre size on the tractors used during secondary tillage. The work was performed in the South of the Rolling Pampa region, Argentina. Secondary tillage traffic was simulated by one pass of a conventional 2WD tractor, using four configurations of bias-ply rear tyres: 18.4×34, 23.1×30, 18.4×38 and 18.4×38 duals, two ballast conditions were used in each configuration. Soil bulk density and cone index in a 0 to 600 mm profile were measured before and after traffic. Topsoil compaction increased as did ground pressure. Subsoil compaction increased as total axle load increased and was independent from ground pressure. At heavy conditions, topsoil levels always showed higher cone index values. From 150 to 450 mm depth, the same tendency was found, but with smaller increases in the cone index parameter, 22 to 48%, averaging 35%. Finally, at the deepest layer considered, 600 mm, differential increases due to the axle load are great enough as to be considered similar to those found in the upper horizon, 36 to 64%, averaging 55%. On the other hand, bulk density tended to be less responsive than cone index to the traffic treatments. Topsoil compaction can be reduced by matching conventional bias-ply tyres with an optimized axle weight.  相似文献   

15.
This paper discusses the loading of a typical central Anatolian soil by the most commonly used corn and wheat production agricultural equipment. It further describes the effect that loading and soil conditions have on soil strength, namely compaction, and proposes techniques for minimizing undesired soil compaction. Experiments were carried out on a typical central Anatolian medium-textured imperfectly drained clay loam soil (Cambisol). Three different tillage methods and subsequently the same field operations were used for each rotation. Shear strength, penetration resistance, bulk density and moisture variations were detected in four sampling periods at each rotation. Tillage reduced the soil strength with the mouldboard plough causing the greatest loosening. However, natural processes and the vehicular traffic caused the soil to be re-compacted to about the same values as before. In any of the cases the obtained parameters did not exceed the critical values for plant growth except the penetration resistance in the 20–30 cm depth layer during corn production.  相似文献   

16.
Soil compactions are widely dispersed in the world but tend to be the most prevalent, where heavy machinery is used in agriculture. The increasing use of heavy machinery is the primary cause of soil and subsoil compaction. The impact of subsoil compaction on root growth and yield of wheat (Triticum aestivum L) were evaluated during 2006 and 2007. Sub-soil compactions were created by three normal loads, i.e. 4.40, 6.40 and 8.40 kg and four number of passes of tractor, i.e. 1, 6, 11 and 16. The field was divided into 39 plots including a control plot, i.e. no passes of the tractor. The size of each plot was 400 square meter. A factorial randomized block design was followed in laying out the experiment and care was taken that all the 13 treatments and their replications are included in field experiments. It was observed that for all the compaction treatments in the field experiment on the wheat crop, 51–61% of wheat roots were confined in 0–15 cm, 17–20% in 15–30 cm and the rest 22–28% is below 30 cm soil layer. Sub-soil compaction reduced the wheat crop yields to a maximum of 23%. A statistical model is developed to predict crop yield considering the root length density of the crop. Average root diameters increased with the increase of the sub-soil compaction level. In sub-soil zone, average root diameter decreased with the increase of sub-soil compaction level.  相似文献   

17.
Modification of some soil mechanical properties (penetration resistance and consolidation pressure) induced by vehicle compaction during mechanized forest exploitation was studied in an acid and loamy leached forest soil of the loessic belt of central Belgium. In situ penetration tests and laboratory Bishop–Wesley cell tests were undertaken for the two main soil horizons of a beech high-forest, i.e. the eluvial E horizon (5–30 cm depth) and the underlying clay-enriched Bt horizon (30–60 cm depth). Both undisturbed and wheel-rutted soil areas were studied (E and Bt horizons vs. Eg and Btg horizons).

Results show that: The experimental overconsolidation pressure of the eluvial reference horizon (E) is about 50 kPa higher than the value calculated from soil overburden pressure; this probably results from suction action during dry periods. The clay-enriched reference horizon (Bt) shows the same trends. In wheel-rutted areas, seven years after logging operations, the Eg horizon memorizes only 14.5% of the wheel induced stress due to forest machinery.

In the compacted Btg horizon, the experimental overconsolidation pressure represents 96% of the exerted theoretical stresses due to harvesting actions. The good recording of the exerted stresses, after seven years, can be explained by: (1) The Btg depth which keeps it from seasonal variations i.e. from desiccation–moistening or freeze–thaw cycling; (2) amorphous and free iron accumulation inducing a “glue” effect of the Btg soil matrix, which could stabilize the soil structure and prevent recovery to initial conditions. These results provide clear evidence that on loessic materials, soil compaction due to logging operations leads to modifications in both physical (bulk density, total porosity) and mechanical (penetration resistance and consolidation pressure) soil properties.  相似文献   


18.
Cone index, as determined by a cone penetrometer, is frequently used as a measure of soil strength. The index is a compound parameter involving components of shear, compressive and tensile strength and soil metal friction. In order to assess the effect of soil type and condition on the relative contributions of these components to penetration resistance, the forces required to push blunt and sharp probes into two soils under a range of moisture contents and bulk densities were investigated. The maximum penetration force in homogeneous soil was not uniquely related to dry bulk density or cohesion, but varied with soil moisture content.At high and low moisture contents, the soil tended to interact with the shaft of the penetrometer thus increasing the resistance to penetration. At low moisture content, bodies of compressed soil formed in front of the probe, effectively changing the probe geometry.It was concluded that interpretation of cone index in typical layered field soils is difficult. Even in homogeneous soils, the proportion of shear, compressive and tensile components that the cone index reflects varies with soil condition.  相似文献   

19.
Axisymmetric finite element (FE) method was developed to simulate cone penetration process in layered granular soil. The FE was modeled using ABAQUS/Explicit, a commercially available package. Soil was considered as a non-linear elastic plastic material which was modeled using variable elastic parameters of Young’s Modulus and Poisson’s ratio and Drucker–Prager criterion with yield stress dependent material hardening property. The material hardening parameters of the model were estimated from the USDA-ARS National Soil Dynamics Laboratory – Auburn University (NSDL-AU) soil compaction model. The stress–strain relationship in the NSDLAU compaction model was modified to account for the different soil moisture conditions and the influence of precompression stress states of the soil layers. A surface contact pair (‘slave-master’) algorithm in ABAQUS/Explicit was used to simulate the insertion of a rigid cone (RAX2 ABAQUS element) into deformable and layered soil medium (CAX4R ABAQUS element). The FE formulation was verified using cone penetration data collected on a soil chamber of Norfolk sandy loam soil which was prepared in two compaction treatments that varied in bulk density in the hardpan layer of (1) 1.64 Mg m−3 and (2) 1.71 Mg m−3. The FE model successfully simulated the trend of cone penetration in layered soils indicating the location of the sub-soil compacted (hardpan) layer and peak cone penetration resistance. Modification of the NSDL-AU model to account for the actual soil moisture content and inclusion of the influence of precompression stress into the strain behavior of the NSDL-AU model improved the performance of FE in predicting the peak cone penetration resistance. Modification of the NSDL-AU model resulted in an improvement of about 42% in the finite element-predicted soil cone penetration forces compared with the FE results that used the NSDL-AU ‘virgin’ model.  相似文献   

20.
A 580/70R38 tractor drive tire with an aspect ratio of 0.756 and a 650/75R32 tire with an aspect ratio of 0.804 were operated at two dynamic loads and two inflation pressures on a sandy loam and a clay loam with loose soil above a hardpan. Soil bulk density and cone index were measured just above the hardpan beneath the centerline and edge of the tires. The bulk densities were essentially equal for the two tires and cone indices were also essentially equal for the two tires. Soil bulk density and cone index increased with increasing dynamic load at constant inflation pressure, and with increasing inflation pressure at constant dynamic load. In comparisons of the centerline and edge locations, soil bulk density and cone index were significantly less beneath the edge than beneath the centerline of the tires. Soil compaction is not likely to be affected by the aspect ratio of radial-ply tractor drive tires when aspect ratios are between 0.75 and 0.80.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号