首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The collision complex formed from a vibrationally excited reactant undergoes redissociation to the reactant, intramolecular vibrational relaxation (randomization of vibrational energy), or chemical reaction to the products. If attractive interaction between the reactants is large, efficient vibrational relaxation in the complex prevents redissociation to the reactants with the initial vibrational energy, and the complex decomposes to the reactants with low vibrational energy or converts to the products. In this paper, we have studied the branching ratios between the intramolecular vibrational relaxation and chemical reaction of an adduct HO(v)-CO formed from OH(X(2)Π(i)) in different vibrational levels v = 0-4 and CO. OH(v = 0-4) generated in a gaseous mixture of O(3)/H(2)/CO/He irradiated at 266 nm was detected with laser-induced fluorescence (LIF) via the A(2)Σ(+)-X(2)Π(i) transition, and H atoms were probed by the two-photon excited LIF technique. From the kinetic analysis of the time-resolved LIF intensities of OH(v) and H, we have found that the intramolecular vibrational relaxation is mainly governed by a single quantum change, HO(v)-CO → HO(v-1)-CO, followed by redissociation to OH(v-1) and CO. With the vibrational quantum number v, chemical process from the adduct to H + CO(2) is accelerated, and vibrational relaxation is decelerated. The countertrend is elucidated by the competition between chemical reaction and vibrational relaxation in the adduct HOCO.  相似文献   

3.
Femtosecond primary events in bacteriorhodopsin (BR) and its retinal modified analogs are discussed. Ultrafast time resolved electronic spectra of the primary intermediates induced in the BR photocycle are discussed along with spectral and kinetic inconsistencies of the previous models proposed in the literature. The theoretical model proposed in this paper based on vibrational coupling between the electronic transition of the chromophore and intramolecular vibrational modes allows us to calculate the equilibrium electronic absorption band shape and the hole burning profiles. The model is able to rationalize the complex pattern of behavior for the primary events in BR and explain the origin of the apparent inconsistencies between the experiment and the previous theoretical models. The model presented in the paper is based on the anharmonic coupling assumption in the adiabatic approximation using the canonical transformation method for diagonalization of the vibrational Hamiltonian instead of the commonly used perturbation theory. The electronic transition occurs between the Born-Oppenheimer potential energy surfaces with the electron involved in the transition being coupled to the intramolecular vibrational modes of the molecule (chromophore). The relaxation of the excited state occurs by indirect damping (dephasing) mechanisms. The indirect dephasing is governed by the time evolution of the anharmonic coupling constant driven by the resonance energy exchange between the intramolecular vibrational mode and the bath. The coupling with the intramolecular vibrational modes results in the Franck-Condon progression of bands that are broadened due to the vibrational dephasing mechanisms. The electronic absorption line shape has been calculated based on the linear response theory whereas the third order nonlinear response functions have been used to analyze the hole burning profiles obtained from the pump-probe time-resolved measurements. The theoretical treatment proposed in this paper provides a basis for a substantial revision of the commonly accepted interpretation of the primary events in the BR photocycle that exists in the literature.  相似文献   

4.
Molecular vibration and rotation play a significant role in the intramolecular photoexcitation dynamics of the so-called intermediate-case molecule, and the fluorescence intensity, decay and polarization of s-triazine vapor are shown to depend on the excited rovibronic level of the S1 state. Fluorescence characteristics are interpreted by assuming three zero-order states: (1) a zero-order singlet state that carries the absorption intensity and emits fluorescence with sharp structure; (2) zero-order singlet states that do not carry the absorption intensity but emit broad fluorescence; and (3) zero-order triplet states. The interaction among these states depends not only on the vibrational level but also on the rotational level excited. It is suggested that the number of triplet states coupled to the singlet state increases with increasing excess vibrational energy. It is also suggested that K-scrambling occurs both in the triplet manifold following intersystem crossing (ISC) and in the singlet manifold following intramolecular vibrational energy redistribution (IVR). The fluorescence intensity and decay of s-triazine vapor are significantly influenced by a magnetic field, and the field effects are interpreted in terms of the spin decoupling in the triplet manifold following ISC; the role of external magnetic fields is to mix the spin sublevels of different rovibronic levels coupled to the excited singlet state. Magnetic depolarization of fluorescence also occurs because of the efficient interaction between the excited singlet state and the triplet state.  相似文献   

5.
Intramolecular vibrational energy flow in excited bridged azulene-anthracene compounds is investigated by time-resolved pump-probe laser spectroscopy. The bridges consist of molecular chains and are of the type (CH(2))(m) with m up to 6 as well as (CH(2)OCH(2))(n) (n=1,2) and CH(2)SCH(2). After light absorption into the azulene S(1) band and subsequent fast internal conversion, excited molecules are formed where the vibrational energy is localized at the azulene side. The vibrational energy transfer through the molecular bridge to the anthracene side and, finally, to the surrounding medium is followed by probing the red edge of the azulene S(3) absorption band at 300 nm and/or the anthracene S(1) absorption band at 400 nm. In order to separate the time scales for intramolecular and intermolecular energy transfer, most of the experiments were performed in supercritical xenon where vibrational energy transfer to the bath is comparably slow. The intramolecular equilibration proceeds in two steps. About 15%-20% of the excitation energy leaves the azulene side within a short period of 300 fs. This component accompanies the intramolecular vibrational energy redistribution (IVR) within the azulene chromophore and it is caused by dephasing of normal modes contributing to the initial local excitation of the azulene side and extending over large parts of the molecule. Later, IVR in the whole molecule takes place transferring vibrational energy from the azulene through the bridge to the anthracene side and thereby leading to microcanonical equilibrium. The corresponding time constants tau(IVR) for short bridges increase with the chain length. For longer bridges consisting of more than three elements, however, tau(IVR) is constant at around 4-5 ps. Comparison with molecular dynamics simulations suggests that the coupling of these chains to the two chromophores limits the rate of intramolecular vibrational energy transfer. Inside the bridges the energy transport is essentially ballistic and, therefore, tau(IVR) is independent on the length.  相似文献   

6.
Given the tremendous potential applications of excited state intramolecular proton transfer (ESIPT) systems, ESIPT molecules have received widespread attention. In this work, based on density functional theory (DFT) and time‐dependent DFT (TDDFT) methods, we theoretically study the excited state dynamical behaviors of salicyladazine (SA) molecules. Our simulated results show that the double intramolecular hydrogen bonds of SA are strengthened in the S1 state via exploring bond distances, bond angles, and infrared (IR) vibrational spectra. Exploring the frontier molecular orbitals (MOs), we confirm that charge redistributions indeed have effects on excited state dynamical behaviors. The increased electronic densities on N atoms and the decreased electronic densities on O atoms imply that charge redistribution may trigger the ESPT process. Analyzing the constructed S0‐state and S1‐state potential energy surfaces (PESs), we confirm that only the excited state single proton transfer reaction can occur although SA possesses two intramolecular hydrogen bonds. In this work, we clarify the specific ESIPT mechanism, which may facilitate developing novel applications based on the SA system in future.  相似文献   

7.
Zero electron kinetic energy (ZEKE) spectroscopy is employed to gain information on the vibrational energy levels of the para-fluorotoluene (pFT) cation. Vibrationally resolved spectra are obtained following excitation through a range of intermediate vibrational energy levels in the S1 state. These spectra allow the observation of different cationic vibrational modes, whose assignment is achieved both from a knowledge of the S1 vibrational states and also by comparison with density functional calculations. In one notable case, clean ZEKE spectra were obtained from two overlapped S1 features. From the authors' data, the adiabatic ionization energy of pFT was derived as 70,946+/-4 cm(-1). The information on the cationic energy levels obtained will be useful in untangling the intramolecular vibrational redistribution dynamics of pFT in the S1 state.  相似文献   

8.
We report studies of a supersonically cooled 2-indanol using two-color resonantly enhanced multiphoton ionization (REMPI) and two-color zero kinetic energy (ZEKE) photoelectron spectroscopy. In the REMPI experiment, we have identified three conformers of 2-indanol and assigned the vibrational structures of the first electronically excited state for the two major conformers. Conformer Ia contains an intramolecular hydrogen bond between the -OH group and the phenyl ring, while conformer IIb has the -OH group in the equatorial position. We have further investigated the vibrational spectroscopy of the cation for the two major conformers using the ZEKE spectroscopy. The two conformers display dramatically different vibrational distributions. The ZEKE spectrum of conformer Ia shows an extensive progression in the puckering mode of the five member ring, indicating a significant geometry change upon ionization. The ZEKE spectra of conformer IIb are dominated by single vibronic transitions, and the intensity of the ZEKE signal is much stronger than that of conformer Ia. These results indicate an invariance of the molecular frame during ionization for conformer IIb. We have performed ab initio and density functional theory calculations to obtain potential energy surfaces along the dihedral angle involving the -OH group for all three electronic states. In addition, we have also calculated the vibrational distribution of the ZEKE spectrum for the puckering mode of the five member ring. Not only the vibrational frequencies but also the intensity distributions for both conformers have been reproduced satisfactorily. The adiabatic ionization energies have been determined to be 68 593+/-5 cm(-1) for conformer Ia and 68 981+/-5 cm(-1) for conformer IIb.  相似文献   

9.
The semiclassical tunneling method is applied to evaluate the tunneling splitting of tropolone due to the intramolecular proton transfer in the electronic excited state, first time, in a framework of the trajectory on-the-fly molecular dynamics (TOF-MD) approach. To prevent unphysical zero-point vibrational energy transfer among the normal modes of vibration, quantum zero-point vibrational energies are assigned only to the vibrational modes related to intramolecular proton transfer, whereas the remaining modes are treated as bath modes. Practical ways to determine the tunnel-initiating points and tunneling path are introduced. It is shown that the tunneling splitting decreases as the bath-mode energy increases. The experimental tunneling splitting value is well reproduced by the present TOF-MD approach based on the Wentzel-Kramers-Brillouin (WKB) approximation.  相似文献   

10.
We present an ab initio direct Ehrenfest dynamics scheme using a three time-step integrator. The three different time steps are implemented with nuclear velocity Verlet, nuclear-position-coupled midpoint Fock integrator, and time-dependent Hartree-Fock with a modified midpoint and unitary transformation algorithm. The computational cost of the ab initio direct Ehrenfest dynamics presented here is found to be only a factor of 2-4 larger than that of Born-Oppenheimer (BO) dynamics. As an example, we compute the vibration of the NaCl molecule and the intramolecular torsional motion of H2C=NH2+ by Ehrenfest dynamics compared with BO dynamics. For the vibration of NaCl with an initial kinetic energy of 1.16 eV, Ehrenfest dynamics converges to BO dynamics with the same vibrational frequency. The intramolecular rotation of H2C=NH2+ produces significant electronic excitation in the Ehrenfest trajectory. The amount of nonadiabaticity, suggested by the amplitude of the coherent progression of the excited and ground electronic states, is observed to be directly related to the strength of the electron-nuclear coupling. Such nonadiabaticity is seen to have a significant effect on the dynamics compared with the adiabatic approximation.  相似文献   

11.
The energy transfer of highly excited ozone molecules is investigated by means of classical trajectories. Both intramolecular energy redistribution and the intermolecular energy transfer in collisions with argon atoms are considered. The sign and magnitude of the intramolecular energy flow between the vibrational and the rotational degrees of freedom crucially depend on the projection K(a) of the total angular momentum of ozone on the body-fixed a axis. The intermolecular energy transfer in single collisions between O(3) and Ar is dominated by transfer of the rotational energy. In accordance with previous theoretical predictions, the direct vibrational de-excitation is exceedingly small. Vibration-rotation relaxation in multiple Ar+O(3) collisions is also studied. It is found that the relaxation proceeds in two clearly distinguishable steps: (1) During the time between collisions, the vibrational degrees of freedom are "cooled" by transfer of energy to rotation; even at low pressure equilibration of the internal energy is slow compared to the time between collisions. (2) In collisions, mainly the rotational modes are "cool" by energy transfer to argon.  相似文献   

12.
13.
The article presents calculated dissociative recombination (DR) rate coefficients for H(3) (+). The previous theoretical work on H(3) (+) was performed using the adiabatic hyperspherical approximation to calculate the target ion vibrational states and it considered just a limited number of ionic rotational states. In this study, we use accurate vibrational wave functions and a larger number of possible rotational states of the H(3) (+) ground vibrational level. The DR rate coefficient obtained is found to agree better with the experimental data from storage ring experiments than the previous theoretical calculation. We present evidence that excited rotational states could be playing an important role in those experiments for collision energies above 10 meV. The DR rate coefficients calculated separately for ortho- and para-H(3) (+) are predicted to differ significantly at low energy, a result consistent with a recent experiment. We also present DR rate coefficients for vibrationally excited initial states of H(3) (+), which are found to be somewhat larger than the rate coefficient for the ground vibrational level.  相似文献   

14.
The skeletal motions contributing to the reaction path of the ultrafast excited state intramolecular proton transfer (ESIPT) are determined directly from time resolved measurements. We investigate the ESIPT in the compounds 2-(2′-hydroxyphenyl)benzothiazole, 2-(2′-hydroxyphenyl)benzoxazole and ortho-hydroxybenzaldehyde by UV–visible pump-probe spectroscopy with 30 fs resolution. The proton transfer is observed in real time and a characteristic ‘ringing’ of the molecule in a small number of vibrational modes is found after the reaction. The results show that a bending motion of the molecular skeleton reduces the proton donor–acceptor distance and an electronic configuration change occurs at a sufficient contraction leading to the bonds of the product conformer. The process evolves as a ballistic wavepacket propagation on an adiabatic potential energy surface. The proton is shifted by the skeletal motions from the donor to the acceptor site and tunneling has not to be considered.  相似文献   

15.
彭亚晶  付星  蒋艳雪 《化学通报》2015,78(10):923-927
采用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)研究了气相水杨酸(SA)分子的激发态氢键动力学过程。通过对水杨酸分子基态和激发态结构的优化,以及对其稳态吸收和发射光谱特性、前线分子轨道、红外振动光谱和势能曲线的计算分析,阐明水杨酸分子内质子转移可在激发态下自发地发生,导致其激发态可存在烯醇式和酮式两种异构体结构,并揭示了这种质子转移源于分子内电荷转移的激发态氢键的加强机制。  相似文献   

16.
An expression for the rate constant of the vibrational predissociation (VPD) of T-shaped triatomic van der Waals' (vdW) molecules is derived on the basis of the adiabatic separation between the high-frequency intramolecular and low-frequency vdW modes. The intramolecular and vdW modes are assumed to be characterized by the Morse-type interaction potentials. The dependence of the VPD line width on the intramolecular vibrational quantum number of a T-Shaped I2-He vdW molecule is calculated by using the expression derived. The magnitudes of the calculated VPD line width are of the same order as those of the experimental. It is shown that the Condon approximation is insufficient and the non-Condon treatment is necessary to evaluate quantitatively the VPD rate constant within the adiabatic theory.  相似文献   

17.
To determine the probability and mechanism of water cluster ionization initiated by the absorption of energy equal to the adiabatic ionization potential, the evolution of the vibrationally excited ring-like water tetramer was studied. The simulations were carried out in terms of the classical dynamics approach in the Born-Oppenheimer approximation. The adiabatic potential of the system and the forces acting on the nuclei were calculated in the second order of the Möller-Plesset perturbation theory with the use of the extended double-zeta 6-31++G** basis set. The initial states of the cluster system differed in the energy distribution over the intra-and intermolecular vibrational degrees of freedom. The initial conditions that promote the formation of an H3O ... H2O ... OH sequence of fragments, when the vertical electron detachment requires the energy equal to the adiabatic ionization potential of the system, are found.  相似文献   

18.
The dynamics of the enolic form of acetylacetone (E-AcAc) was investigated using a femtosecond pump-probe experiment. The pump at 266 nm excited E-AcAc in the first bright state, S2(pi pi*). The resulting dynamics was probed by multiphoton ionization at 800 nm. It was investigated for 80 ps on the S2(pi pi*) and S1(n pi*) potential energy surfaces. An important step is the transfer from S2 to S1 that occurs with a time constant of 1.4 +/- 0.2 ps. Before, the system had left the excitation region in 70 +/- 10 fs. An intermediate step was identified when E-AcAc traveled on the S2 surface. Likely, it corresponds to an accidental resonance in the detection scheme that is met along this path. More importantly, some clues are given that an intramolecular vibrational energy relaxation is observed, which transfers excess vibrational energy from the enolic group O-H to the other modes of the molecule. The present multistep evolution of excited E-AcAc probably also describes, at least qualitatively, the dynamics of other electronically excited beta-diketones.  相似文献   

19.
Aromatic amino acids have large UV absorption cross-sections and low fluorescence quantum yields. Ultrafast internal conversion, which transforms electronic excitation energy to vibrational energy, was assumed to account for the photostability of amino acids. Recent theoretical and experimental investigations suggested that low fluorescence quantum yields of phenol (chromophore of tyrosine) are due to the dissociation from a repulsive excited state. Radicals generated from dissociation may undergo undesired reactions. It contradicts the observed photostability of amino acids. In this work, we explored the photodissociation dynamics of the tyrosine chromophores, 2-, 3- and 4-hydroxybenzoic acid in a molecular beam at 193 nm using multimass ion imaging techniques. We demonstrated that dissociation from the excited state is effectively quenched for the conformers of hydroxybenzoic acids with intramolecular hydrogen bonding. Ab initio calculations show that the excited state and the ground state potential energy surfaces change significantly for the conformers with intramolecular hydrogen bonding. It shows the importance of intramolecular hydrogen bond in the excited state dynamics and provides an alternative molecular mechanism for the photostability of aromatic amino acids upon irradiation of ultraviolet photons.  相似文献   

20.
The primary photophysical and photochemical processes in the photochemistry of 1-acetoxy-2-methoxyanthraquinone (1a) were studied using femtosecond transient absorption spectroscopy. Excitation of 1a at 270 nm results in the population of a set of highly excited singlet states. Internal conversion to the lowest singlet npi* excited state, followed by an intramolecular vibrational energy redistribution (IVR) process, proceeds with a time constant of 150 +/- 90 fs. The 1npi* excited state undergoes very fast intersystem crossing (ISC, 11 +/- 1 ps) to form the lowest triplet pipi* excited state which contains excess vibrational energy. The vibrational cooling occurs somewhat faster (4 +/- 1 ps) than ISC. The primary photochemical process, migration of acetoxy group, proceeds on the triplet potential energy surface with a time constant of 220 +/- 30 ps. The transient absorption spectra of the lowest singlet and triplet excited states of 1a, as well as the triplet excited state of the product, 9-acetoxy-2-methoxy-1,10-anthraquinone (2a), were detected. The assignments of the transient absorption spectra were supported by time-dependent DFT calculations of the UV-vis spectra of the proposed intermediates. All of the stationary points for acyl group migration on the triplet and ground state singlet potential energy surfaces were localized, and the influence of the acyl group substitution on the rate constants of the photochemical and thermal processes was analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号