首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The self-diffusion of cucurbit[7]uril (CB[7]) and its host-guest complexes in D2O has been examined using pulsed gradient spin-echo nuclear magnetic resonance spectroscopy. CB[7] diffuses freely at a concentration of 2 mM with a diffusion coefficient (D) of 3.07 x 10(-10) m(2) s(-1). At saturation (3.7 mM), CB[7] diffuses more slowly (D = 2.82 x 10(-10) m(2) s(-1)) indicating that it partially self-associates. At concentrations between 2 and 200 mM, CsCl has no effect on the diffusion coefficient of CB[7] (1 mM). Conversely, CB[7] (2 mM) significantly affects the diffusion of 133Cs+ (1 mM), decreasing its diffusion coefficient from 1.86 to 0.83 x 10(-9) m(2) s(-1). Similar changes in the rate of diffusion of other alkali earth metal cations are observed upon the addition of CB[7]. The diffusion coefficient of 23Na+ changes from 1.26 to 0.90 x 10(-9) m(2) s(-1) and 7Li+ changes from 3.40 to 3.07 x 10(-9) m(2) s(-1). In most cases, encapsulation of a variety of inorganic and organic guests within CB[7] decreases their rates of diffusion in D2O. For instance, the diffusion coefficient of the dinuclear platinum complex trans-[[PtCl(NH3)2}2mu-dpzm](2+) (where dpzm is 4,4'-dipyrazolylmethane) decreases from 4.88 to 2.95 x 10(-10) m(2) s(-1) upon encapsulation with an equimolar concentration of CB[7].  相似文献   

2.
Gas transport of carbon dioxide in poly[bisphenol A carbonate-co-4,4'-(3,3,5-trimethylcyclohexylidene)diphenol carbonate] films over a wide range of pressure is described. The interpretation of the experimental results in terms of the dual mode model allowed the evaluation of the parameters of the model that govern the gas permeation process. The value of the diffusion coefficient obtained for carbon dioxide at zero concentration was 2.4 x 10(-8) cm(2) s(-1), at 303 K. This parameter was also measured by using pulsed field gradient NMR finding that its value reaches a nearly constant value of (2.7 +/- 0.9) x 10(-8) cm(2) s(-1), at 298 K, for diffusion times greater than 20 ms. Both the diffusion and solubility coefficients were also computed by using simulation methods based on the transition states theory and the Widom method, respectively. The value obtained for the diffusion coefficient was 1.8 x 10(-8) cm(2) s(-1), at 303 K, which compares very favorably with the experimental measurements. The drop of the simulated solubility coefficient with increasing pressure is sharper than that of the experimental one, at low pressures, and similar, at high pressures.  相似文献   

3.
In the present study, we applied for the first time (31)P diffusion NMR to resolve different species obtained by the addition of organophosphorus compounds (OP) such as diisopropyl phosphorofluoridate (DFP) or 1-pyrenebutyl phosphorodichloridate (PBPDC) to alpha-chymotrypsin (Cht). (31)P diffusion NMR was used since the products of these reactions constitute a mixture of OP-covalent conjugates of the enzyme and OP-containing hydrolysis products that have noninformative (1)H NMR spectra. It was shown that the peak, attributed to the covalent native diisopropylphosphoryl-Cht (DIP-Cht) conjugate by chemical shift considerations, has a greater diffusion coefficient (D = (0.65 +/- 0.01) x 10(-5) cm(2) s(-1)) than expected from its molecular mass (approximately 25 kDa). This peak was therefore suggested to consist of at least two superimposed signals of diisopropyl phosphoryl (DIP) pools of high and low molecular weights that happen to have the same chemical shift. This conclusion was substantiated by the use of DMSO-d(6) that separated the overlapping signals. Diffusion measurements performed on the extensively dialyzed and unfolded DIP-Cht conjugate still resulted in a high diffusion coefficient ((0.30 +/- 0.05) x 10(-5) cm(2) s(-1)) relative to the assumed molecular mass. This observation was attributed to a dynamic dealkylation at the OP moiety (i.e., aging) that occurred during the relatively long diffusion measurements, where DIP-Cht was converted to the corresponding monoisopropyl phosphoryl Cht (MIP-Cht) conjugate. Homogeneous aged forms of OP-Cht were obtained by use of DFP and heat-induced dealkylation of DIP-Cht, and by PBPDC that provided the aged form via the hydrolysis of a P-Cl bond (PBP-Cht). The thermally stable aged conjugates enabled a reliable determination of the diffusion coefficients over several days of data acquisition, and the values found were (0.052 +/- 0.002) x 10(-5) cm(2) s(-1) and (0.054 +/-0.004) x 10(-5) cm(2) s(-1) for the MIP-Cht and the PBP-Cht adducts, respectively, values in the range expected for a species with a molecular weight of 25 kDa. The advantages and limitations of (31)P diffusion NMR in corroborating the type of species that prevail in such systems are briefly discussed.  相似文献   

4.
We report the lateral diffusion properties of 2,2'-di-O-decyl-3,3'-di-O-(eicosanyl)-bis-(rac-glycero)-1,1'-diphosphocholine (C20BAS) using pulsed-field gradient NMR (PFG-NMR) and fluorescence recovery after photobleaching (FRAP). C20BAS membranes display a melting transition at Tm = 15.7 degrees C, as determined by differential scanning calorimetry and 31P NMR chemical shift anisotropy. The lateral diffusion coefficient of C20BAS, as determined by PFG-NMR and FRAP, at 25 degrees C, were DPFG-NMR = 1.9 +/- 0.6 x 10(-8) cm2/s and DFRAP C20BAS = 1.2 +/- 0.1 x 10(-8) cm2/s, respectively. In comparison, the lateral diffusion coefficient of the monopolar phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), was 1.8 +/- 0.9 x 10(-8) and 2.5 +/- 0.9 x 10(-8) cm2/s using PFG-NMR and FRAP, respectively.  相似文献   

5.
The complexes of cyclohexylacetic acid and cholic acid with beta-cyclodextrin were studied by NMR diffusion coefficient measurements. The diffusion coefficient of the 1:1 cyclohexylacetic acid/beta-cyclodextrin complex, K(a) = 1800 +/- 100 M(-1), is slightly slower (3.23 +/- 0.07 x 10(-6) cm(2) s(-1)) than that of beta-cyclodextrin (3.29 +/- 0.07 x 10(-6) cm(2) s(-1)). The diffusion coefficient of the 1:1 cholic acid/beta-cyclodextrin complex, K(a) = 5900 +/- 800 M(-1), is significantly slower (2.93 +/- 0.07 x 10(-6) cm(2) s(-1)) than that of beta-cyclodextrin. The results indicate that caution should be exercised when studying host-guest complexation by the so-called 'single point' technique. A novel data treatment is introduced which takes into account the diffusion behavior of all of the species when determining K(a). Experimentally determined diffusion coefficients of complexes are also a useful probe of the size of host-guest complexes.  相似文献   

6.
We present a new method to measure absolute diffusion coefficients at nanomolar concentrations with high precision. Based on a modified fluorescence correlation spectroscopy (FCS)-setup, this method is improved by introducing an external ruler for measuring the diffusion time by generating two laterally shifted and overlapping laser foci at a fixed and known distance. Data fitting is facilitated by a new two-parameter model to describe the molecule detection function (MDF). We present a recorded MDF and show the excellent agreement with the fitting model. We measure the diffusion coefficient of the red fluorescent dye Atto655 under various conditions and compare these values with a value achieved by gradient pulsed field NMR (GPF NMR). From these measurements we conclude, that the new measurement scheme is robust against optical and photophysical artefacts which are inherent to standard FCS. With two-focus-FCS, the diffusion coefficient of 4.26 x 10(-6) cm2s(-1) for Atto655 in water at 25 degrees C compares well with the GPF NMR value of 4.28 x 10(-6) cm2s(-1).  相似文献   

7.
The present work reports the tracer diffusion coefficient for (93)Nb in rutile TiO(2) single crystals using secondary ion mass spectrometry (SIMS). The determined tracer diffusion coefficient exhibited the following temperature dependence in air ( p(O2) = 21 kPa) over the range 1073-1573 K: D93(Nb) = (4.7 m2 s(-1))x10(-7+/-0.4) exp ((-244 +/- 9 kJ mol-1)/RT) Through comparison to the self-diffusion of (44)Ti in rutile TiO(2), (93)Nb is interpreted to diffuse via the interstitialcy mechanism. The obtained tracer diffusion data are useful for ensuring compositional control during the processing of Nb-doped TiO(2)-based semiconductors using solid-state reactions between Nb(2)O(5) and TiO(2).  相似文献   

8.
This work describes a novel approach for monitoring analyte diffusion in solution that is based on electrospray ionization mass spectrometry (ESI-MS). A mass spectrometer at the end of a laminar flow tube is used to measure the Taylor dispersion of an initially sharp boundary between two solutions of different analyte concentration. This boundary is dispersed by the laminar flow profile in the tube. However, this effect is diminished by analyte diffusion that continuously changes the radial position, and hence the flow velocity of individual analyte molecules. The steepness of the resulting dispersion profile therefore increases with increasing diffusion coefficient of the analyte. A theoretical framework is developed to adapt the equations governing the dispersion process to the case of mass spectrometric detection. This novel technique is applied to determine the diffusion coefficients of choline and cytochrome c. The measured diffusion coefficients, (11.9 +/- 1.0) x 10(-10) m(2) s(-1) and (1.35 +/- 0.08) x 10(-10) m(2) s(-1), respectively, are in agreement with the results of control experiments where the Taylor dispersion of these two analytes was monitored optically. Due to the inherent selectivity and sensitivity of ESI-MS, it appears that the approach described in this work could become a valuable alternative to existing methods for studying diffusion processes, especially for experiments on multicomponent systems.  相似文献   

9.
A study of proton diffusion across membranes of block copolymer vesicles in dilute solution is described. The vesicles were formed by the self-assembly of a diblock copolymer of poly(styrene-b-acrylic acid) (PS(310)-b-PAA(36), where the numbers represent the degree of polymerization for individual blocks). A pH gradient was created across the vesicle membrane with the interior pH (pH(in)) of ca. 2.9 and the exterior pH (pH(out)) of ca. 8.5. The permeability of the polystyrene (PS) membrane was tuned by the addition of different amounts of dioxane (0-40 wt %) to the external aqueous solution. Proton concentrations in the solution outside of the vesicles were followed by monitoring the spectrum of a pH-sensitive fluorescent dye, namely 8-hydroxypyrene-1,3,6-trisulfonate. After the start of the experiment, the proton concentrations increase linearly with the square root of time, while the slopes of the lines increase with dioxane content. To calculate the diffusion coefficients of the protons across the vesicular membrane, the concentration data were fitted using a model, which describes the diffusion of species across the membrane of a reservoir. The apparent diffusion coefficient (D*, which equals the true diffusion coefficient multiplied by the partition coefficient of protons between PS and water) increases from 1.1 x 10(-18) cm(2)/s at 7 wt % dioxane in the external solution to 1.2 x 10(-14) cm(2)/s at 40 wt %. The increase of D* with dioxane content is related to its plasticization of the PS membrane, which can be used as a gating mechanism.  相似文献   

10.
We studied the influence of 5 kDa poly(acrylic acid) (PAA) on the phase state, thermal properties, and lateral diffusion in bilayered systems of dimyristoylphosphatidylcholine (DMPC) using (31)P NMR spectroscopy, differential scanning calorimetry (DSC), (1)H NMR with a pulsed field gradient, and (1)H nuclear Overhauser enhancement spectroscopy (NOESY). The presence of PAA does not change the lamellar structure of the system. (1)H MAS NOESY cross-peaks observed for the interaction between lipid headgroups and polyion protons demonstrated only surface PAA-biomembrane interaction. Small concentrations of PAA (up to ~4 mol %) lead to the appearance of a new lateral phase with a higher main transition temperature, a lower cooperativity, and a lower enthalpy of transition. Higher concentrations lead to the disappearance of measurable thermal effects. The lateral diffusion coefficient of DMPC and the apparent activation energy of diffusion gradually decreased at PAA concentrations up to around 4 mol %. The observed effects were explained by the formation of at least two types of PAA-DMPC lateral complexes as has been described earlier (Fujiwara, M.; Grubbs, R. H.; Baldeschwieler, J. D. J. Colloid Interface Sci., 1997, 185, 210). The first one is characterized by a stoichiometry of around 28 lipids per polymer, which corresponds to the adsorption of the entire PAA molecule onto the membrane. Lipid molecules of the complex are exchanged with the "pure" lipid bilayer, with the lifetime of the complex being less than 0.1 s. The second type of DMPC-PAA complex is characterized by a stoichiometry of 6 to 7 lipids per polymer and contains PAA molecules that are only partially adsorbed onto the membrane. A decrease in the DMPC diffusion coefficient and activation energy for diffusion in the presence of PAA was explained by the formation of a new cooperative unit for diffusion, which contains the PAA molecule and several molecules of lipids.  相似文献   

11.
Methanol diffusion in two polymer electrolyte membranes, Nafion 117 and BPSH 40 (a 40% disulfonated wholly aromatic polyarylene ether sulfone), was measured using a modified pulsed field gradient NMR method. This method allowed for the diffusion coefficient of methanol within the membrane to be determined while immersed in a methanol solution of known concentration. A second set of gradient pulses suppressed the signal from the solvent in solution, thus allowing the methanol within the membrane to be monitored unambiguously. Over a methanol concentration range of 0.5–8 M, methanol diffusion coefficients in Nafion 117 were found to increase from 2.9 × 10−6 to 4.0 × 10−6 cm2 s−1. For BPSH 40, the diffusion coefficient dropped significantly over the same concentration range, from 7.7 × 10−6 to 2.5 × 10−6cm2 s−1. The difference in diffusion behavior is largely related to the amount of solvent sorbed by the membranes. Increasing the methanol concentration results in an increase in solvent uptake for Nafion 117, while BPSH 40 actually excludes the solvent at higher concentrations. In contrast, diffusion of methanol measured via permeability measurements (assuming a partition coefficient of 1) was lower (1.3 × 10−6 and 6.4 × 10−7 cm2 s−1 for Nafion 117 and BPSH 40 respectively) and showed no concentration dependence. The differences observed between the two techniques are related to the length scale over which diffusion is monitored and the partition coefficient, or solubility, of methanol in the membranes as a function of concentration. For the permeability measurements, this length is equal to the thickness of the membrane (178 and 132 μm for Nafion 117 and BPSH 40 respectively) whereas the NMR method observes diffusion over a length of approximately 4–8 μm. Regardless of the measurement technique, BPSH 40 is a greater barrier to methanol permeability at high methanol concentrations.  相似文献   

12.
Proton localized NMR spectroscopy (MRS) has been applied to study the diffusion of three small molecules, caffeine, theophylline and caprolactam, in chitosan gels with different concentration of water. This technique allows the non-destructive monitorization of diffusant concentration as a function of time and location. Concentration profiles were compared with theoretical curves based on solutions of Fick's diffusion equation for the best fitting, with the appropriate boundary conditions. The measured concentration profiles show a good agreement with the Fickian law. Values of the diffusion coefficients D ranging from 6.1×10(-6) to 3.4×10(-6)cm(2)s(-1) depending on chitosan concentration and type of diffusant molecule were determined. In addition, measurements of diffusion coefficients at equilibrium conditions with proton pulsed field gradient NMR methods supported the observed Fickian behavior and showed values of D in excellent agreement with those determined by proton MRS. All these facts demonstrate that proton MRS is an appropriate method for investigating diffusion process in complex systems, such as polymer gels.  相似文献   

13.
In structural biology, pulsed field gradient (PFG) NMR spectroscopy for the characterization of size and hydrodynamic parameters of macromolecular solutes has the advantage over other techniques that the measurements can be recorded with identical solution conditions as used for NMR structure determination or for crystallization trials. This paper describes two transverse-relaxation-optimized (TRO) (15)N-filtered PFG stimulated-echo (STE) experiments for studies of macromolecular translational diffusion in solution, (1)H-TRO-STE and (15)N-TRO-STE, which include CRINEPT and TROSY elements. Measurements with mixed micelles of the Escherichia coli outer membrane protein X (OmpX) and the detergent Fos-10 were used for a systematic comparison of (1)H-TRO-STE and (15)N-TRO-STE with conventional (15)N-filtered STE experimental schemes. The results provide an extended platform for evaluating the NMR experiments available for diffusion measurements in structural biology projects involving molecular particles with different size ranges. An initial application of the (15)N-TRO-STE experiment with very long diffusion delays showed that the tedradecamer structure of the 800 kDa Thermus thermophilus chaperonin GroEL is preserved in aqueous solution over the temperature range 25-60 °C.  相似文献   

14.
Acinetobacter haemolyticus is an antibiotic resistant, pathogenic bacterium responsible for an increasing number of hospital infections. Acinetoferrin (Af), the amphiphilic siderophore isolated from this organism, contains two unusual trans-2-octenoyl hydrocarbon chains reminiscent of a phospholipid structural motif. Here, we have investigated the membrane affinity of Af and its iron complex, Fe-Af, using small and large unilamellar phospholipid vesicles (SUV and LUV) as model membranes. Af shows a high membrane affinity with a partition coefficient, K(x)= 6.8 x 10(5). Membrane partitioning and trans-membrane flip-flop of Fe-Af have also been studied via fluorescence quenching of specifically labeled vesicle leaflets and (1)H NMR line-broadening techniques. Fe-Af is found to rapidly redistribute between lipid and aqueous phases with dissociation/partitioning rates of k(off) = 29 s(-1) and k(on) = 2.4 x 10(4) M(-1) s(-1), respectively. Upon binding iron, the membrane affinity of Af is reduced 30-fold to K'(x) = 2.2 x 10(4) for Fe-Af. In addition, trans-membrane flip-flop of Fe-Af occurs with a rate constant, k(p) = 1.2 x 10(-3) s(-1), with egg-PC LUV and a half-life time around 10 min with DMPC SUV. These properties are due to the phospholipid-like conformation of Af and the more extended conformation of Fe-Af that is enforced by iron binding. Remarkable similarities and differences between Af and another amphiphilic siderophore, marinobactin E, are discussed. The potential biological implications of Af and Fe-Af are also addressed. Our approaches using inner- and outer-leaflet-labeled fluorescent vesicles and (1)H NMR line-broadening techniques to discern Af-mediated membrane partitioning and trans-membrane diffusion are amenable to similar studies for other paramagnetic amphiphiles.  相似文献   

15.
The kinetics of reactions of the OH radical with ethene, ethyne (acetylene), propyne (methyl acetylene) and t-butyl-hydroperoxide were studied at temperatures of 69 and 86 K using laser flash-photolysis combined with laser-induced fluorescence spectroscopy. A new pulsed Laval nozzle apparatus is used to provide the low-temperature thermalised environment at a single density of approximately 4x10(16) molecule cm(-3) in N2. The density and temperature within the flow are determined using measurements of impact pressure and rotational populations from laser-induced fluorescence spectroscopy of NO and OH. For ethene, rate coefficients were determined to be k2=(3.22+/-0.46)x10(-11) and (2.12+/-0.12)x10(-11) cm3 molecule(-1) s(-1) at T=69 and 86 K, respectively, in good agreement with a master-equation calculation utilising an ab initio surface recently calculated for this reaction by Cleary et al. (P. A. Cleary, M. T. Baeza Romero, M. A. Blitz, D. E. Heard, M. J. Pilling, P. W. Seakins and L. Wang, Phys. Chem. Chem. Phys., 2006, 8, 5633-5642) For ethyne, no previous data exist below 210 K and a single measurement at 69 K was only able to provide an approximate upper limit for the rate coefficient of k3<1x10(-12) cm3 molecule(-1) s(-1), consistent with the presence of a small activation barrier of approximately 5 kJ mol(-1) between the reagents and the OH-C2H2 adduct. For propyne, there are no previous measurements below 253 K, and rate coefficients of k4=(5.08+/-0.65), (5.02+/-1.11) and (3.11+/-0.09)x10(-12) cm3 molecule(-1) s(-1) were obtained at T=69, 86 and 299 K, indicating a much weaker temperature dependence than for ethene. The rate coefficient k1=(7.8+/-2.5)x10(-11) cm3 molecule(-1) s(-1) was obtained for the reaction of OH with t-butyl-hydroperoxide at T=86 K. Studies of the reaction of OH with benzene and toluene yielded complex kinetic profiles of OH which did not allow the extraction of rate coefficients. Uncertainties are quoted at the 95% confidence limit and include systematic errors.  相似文献   

16.
A deuterium NMR (DNMR) study of the TGBA* (twist grain boundary smectic A*) phase in an NMR magnetic field of 9.4 T for the chiral compound 4-[4'-(1-methyl heptyloxy)] biphenyl 4-(10-undecenyloxy) benzoate (11EB1M7) is reported. The deuterium two-dimensional (2D) exchange spectra were observed for the first time in this phase. The present study allows us to learn how the helicoidal structures arrange in an external magnetic field. To derive quantitative kinetic parameters of this novel phase, both 1D and 2D experimental spectra were simulated by means of a jump diffusion model. By comparing the experimental and simulated spectra, an accurate determination of the dynamic parameters in the TGBA* phase was obtained. Furthermore, the twist angle between two neighboring smectic A blocks is found as 26 +/- 10 degrees, which is consistent with the X-ray results for similar chiral liquid crystals. The diffusion constant (D(parallel)) is estimated to be 3.2 x 10(-12) m(2)/s at 379.5 K.  相似文献   

17.
Absolute rate coefficients for the title reaction, HO + HOCH(2)C(O)CH(3)--> products (R1) were measured over the temperature range 233-363 K using the technique of pulsed laser photolytic generation of the HO radical coupled to detection by pulsed laser induced fluorescence. The rate coefficient displays a slight negative temperature dependence, which is described by: k(1)(233-363 K) = (2.15 +/- 0.30) x 10(-12) exp{(305 +/- 10)/T} cm(3) molecule(-1) s(-1), with a value of (5.95 +/- 0.50) x 10(-12) cm(3) molecule(-1) s(-1) at room temperature. The effects of the hydroxy-substituent and hydrogen bonding on the rate coefficient are discussed based on theoretical calculations. The present results, which extend the database on the title reaction to a range of temperatures, indicate that R1 is the dominant loss process for hydroxyacetone throughout the troposphere, resulting in formation of methylglyoxal at all atmospheric temperatures. As part of this work, the rate coefficient for reaction of O((3)P) with HOCH(2)C(O)CH(3) (R4) was measured at 358 K: k(4)(358 K) = (6.4 +/- 1.0) x 10(-14) cm(3) molecule(-1) s(-1) and the absorption cross section of HOCH(2)C(O)CH(3) at 184.9 nm was determined to be (5.4 +/- 0.1) x 10(-18) cm(2) molecule(-1).  相似文献   

18.
The exciton diffusion length in a nematically organized meso-tetra(4-n-butylphenyl)porphyrin (TnBuPP) layer was found to exceed 40 nm at a temperature of 90 K and to be equal to 22 +/- 3 nm at 300 K. The exciton diffusion coefficient decreases from > or = 3.1 x 10(-6) m(2)/s at 90 K to (2.5 +/- 0.5) x 10(-7) m(2)/s at 300 K. This thermal deactivation is attributed to exciton motion via a band mechanism. The motion of an exciton is not limited by polaronic effects; that is, the deformation of the atomic lattice around the exciton. The absence of polaronic self-trapping implies that the exciton diffusion coefficient can be enhanced by improvement of structural order and rigidity of the material.  相似文献   

19.
A new technique, flowing afterglow with photoions (FIAPI), has been developed to measure the rate coefficient for the recombination of complex ions, and, in particular, polycyclic aromatic hydrocarbon (PAH) cations with electrons. The method is based on the flowing afterglow Langmuir probe - mass spectrometer apparatus at the University of Rennes I. A helium plasma is generated by a microwave discharge in a He buffer gas and downstream, a small amount of argon gas is injected to destroy any helium metastables. A very small amount of neutral PAH molecules is added to the afterglow plasma by evaporation from a plate coated with the PAH to be studied. PAH ions are then produced by photoionization of the parent molecule using a pulsed UV laser (157 nm). The laser beam is oriented along the flow tube and so a constant spatial concentration of photoions is obtained. The electron concentration along the flow tube is measured by means of a movable Langmuir probe. Ion concentration decay in time is measured at a fixed position using a quadrupole mass spectrometer which is triggered by the laser pulse. The recombination of anthracene and pyrene cations has been studied using this technique and we have found a recombination rate of (2.4 +/- 0.8) x 10(-6) cm(3) s(-1) for anthracene and (4.1 +/- 1.2) x 10(-6) cm(3) s(-1) for pyrene.  相似文献   

20.
Wang SF  Du D  Zou QC 《Talanta》2002,57(4):687-692
The electrochemical behaviors of epinephrine (EP) at the l-cysteine self-assembled monolayers modified gold electrode have been studied. The modified electrode shows an excellent electrocatalytic activity for the oxidation of EP and accelerates electron transfer rate. The diffusion coefficient (D) is 1.48x10(-7) cm(2) s(-1). FTIR has shown that cysteine can bind onto the gold surface through the strong sulfur-gold interaction. The electrocatalytic mechanism to EP has been studied. The catalytic current of EP nu s its concentration has a good linear relation in the range of 1.0x10(-7)-2.0x10(-6) mol l(-1), with the correlation coefficient of 0.9989 by differential pulse voltametric (DPV) response. Detection limit is down to 1.0x10(-8) mol l(-1). At a high EP concentration, the relationship between the catalytic current and its concentration exhibits a Michaelis-Menten kinetic mechanism for the electrocatalytic process and the constant K(m) is about 0.155 mmol l(-1). The highest catalytic current I(m) is 2.72 muA. The modified electrode can be used for the determination of EP in practical injection. The method is simple, quick, sensitive and accurate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号