首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
This paper deals with the sol-gel elaboration and defects photoluminescence (PL) examination of Al2O3 nanocrystallites (size ∼30 nm) confined in glass based on silica aerogel. Aluminium oxide aerogels were synthesized using esterification reaction for hydrolysis of the precursor and supercritical conditions of ethyl alcohol for drying. The obtained nanopowder was incorporated in SiO2 host matrix. After heating under natural atmosphere at 1150 °C for 2 h, the composite Al2O3/SiO2 (AS) exhibited a strong PL bands at 400-600 and 700-900 nm in 78-300 K temperature range. PL excitation (PLE) measurements show different origins of the emission. It was suggested that OH-related radiative centres and non-bridging oxygen hole centres (NBOHCs) were responsible for the bands at 400-600 and 700-900 nm, respectively.  相似文献   

2.
Spherical SiO2 particles have been coated with Zn2SiO4:Eu3+ phosphor layers by a Pechini sol-gel process. The microstructure and luminescent properties of the obtained Zn2SiO4:Eu3+@SiO2 particles were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, and lifetime. The results demonstrate that the Zn2SiO4:Eu3+@SiO2 particles, which have regular and uniform spherical morphology, emitted an intensive red light emission at 613 nm under excitation at 395 nm. Besides, the effects of the Eu3+ concentration, annealing temperature and charge compensators of Li+ ions on the PL emission intensities were investigated in detail.  相似文献   

3.
Mg2SnO4, which has an inverse spinel structure, was adopted as the host material of a new green emitting phosphor. Luminescence properties of the manganese-doped magnesium tin oxide prepared by the solid state reaction were investigated under vacuum ultraviolet (VUV) ray and low-voltage electron excitation. The Mg2SnO4:Mn phosphor exhibited green luminescence with the emission spectrum centered at 500 nm due to spin flip transition of the d-orbital electron associated with the Mn2+ ion. Optimum Mn concentration of Mg2SnO4:Mn under VUV excitation with 147 nm wavelength and electron beam excitation with 800 V excitation voltage are 0.25 and 0.6 mol%, respectively. The emission intensities of Mg2SnO4:Mn phosphors under the two excitation sources are higher than those of Zn2SiO4:Mn and ZnGa2O4:Mn phosphors. At 0.25 mol% of Mn concentration, on the other hand, the decay time is shorter than 10 ms.  相似文献   

4.
Mn2+-doped Zn2SiO4 phosphors had been prepared by hydrothermal method in stainless-steel autoclaves. Effects of synthesized methods, reaction temperature, ambience of heat treatment on the structure and the luminescence properties of this silicate were studied with X-ray diffraction apparatus (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM) and fluorescence spectrum. Results show that Zn2SiO4 nanocrystalline can be obtained by hydrothermal method at relatively low temperatures. The absorption pattern shows an absorption edge at about 380 nm originated from ZnO crystals and two absorption bands at about 215 and 260 nm. Mn2+-doped Zn2SiO4 has a luminescence band with the wavelength at about 522 nm under 255 nm excitation, and the luminescent intensity increases after being heat treated.  相似文献   

5.
Stable blue-green photoluminescent ZnO-SiO2 nanocomposite particles exhibiting quantum efficiency as high as 34.8% under excitation at 360 nm were prepared using a spray-drying process from a feed solution that contained both luminescent ZnO nanoparticles synthesized by a sol-gel method and commercially-available SiO2 nanoparticles. The effects of silica nanoparticle size and SiO2-to-ZnO concentration ratio on the PL properties of the composite particles were investigated. The internal structure and chemical composition were investigated in detail using elemental mapping, which revealed that ZnO nanoparticles were well-dispersed within silica nanoparticle matrix. At a LiOH concentration of 0.23 M, the predicted ZnO crystallite diameter before and after spray drying was approximately constant at 3.3 and 3.6 nm, respectively. This result indicates that ZnO particle growth was inhibited and therefore the PL property of ZnO nanoparticles was stably preserved in the composite.  相似文献   

6.
Undoped and vanadium-doped Zn2SiO4 particles embedded in silica host matrix were prepared by a simple solid-phase reaction after the incorporation of ZnO and ZnO:V nanoparticles, respectively, in silica monolith using the sol–gel method with supercritical drying of ethyl alcohol in two steps. After supercritical drying and annealing in the temperature range between 1423 and 1473 K in an air atmosphere, the photoluminescence (PL) measurements show a band centered at about 760 nm in the case of non-doped Zn2SiO4 which is attributed to energy transfer from Zn2SiO4 particles to NBOHs interface defects. In the case of vanadium doped Zn2SiO4, the PL reveals a band centered at about 540 nm attributed to the vanadium in the interfaces between Zn2SiO4 particles and SiO2 host matrix. Photoluminescence excitation (PLE) measurements show different origins of the emission bands. The PLE band (~240–350 nm) may be understood as an energy transfer process from O2? to V5+ which occurs intrinsically in the vanadyl group.  相似文献   

7.
The value of the effective magnetic anisotropy constant of the ferrimagnetic nanoparticles Zn0.15Ni0.85Fe2O4 embedded in a SiO2 silica matrix, determined through ferromagnetic resonance (FMR), is much higher than the magnetocrystalline anisotropy constant. The higher value of the anisotropy constant is due to the existence of surface anisotropy. However, even if the magnetic anisotropy is high, the ferrimagnetic nanoparticles with a 15% concentration, which are isolated in a SiO2 matrix, display a superparamagnetic (SPM) behavior at room temperature and at a frequency of the magnetization field equal to 50 Hz. The FMR spectrum of the novel nanocomposite (Zn0.15Ni0.85Fe2O4)0.15/(SiO2)0.85, recorded at room temperature and a frequency of 9.060 GHz, is observed at a resonance field (B0r) of 0.2285 T, which is substantially lower than the field corresponding to free electron resonance (ESR) (0.3236 T). Apart from the line corresponding to the resonance of the nanoparticle system, the spectrum also contains an additional weaker line, identified for a resonance field of ∼0.12 T, which is appreciably lower than B0r. This line was attributed to magnetic ions complex that is in a disordered structure in the layer that has an average thickness of 1.4 nm, this layer being situated on the surface of the Zn0.15Ni0.85Fe2O4 nanoparticles that have a mean magnetic diameter of 8.9 nm.  相似文献   

8.
A new self-activated yellow-emitting Zn2V2O7 phosphor was synthesized by high temperature solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed the sample with monoclinic formation of Zn2V2O7. The excitation and emission spectra indicated the phosphor can be efficiently excited by near ultraviolet (NUV) light in 220–400 nm range and exhibit a bright broad yellow emission with the highest emission intensity at 531 nm. The broad emission band from 400 to 650 nm can be attributed to the charge transfer transition in the VO4 tetrahedra, which suggests that the phosphor is a promising yellow phosphor applied for white light-emitting diodes (WLED).  相似文献   

9.
Manganese-doped zinc silicate (Zn2SiO4:Mn) is a kind of phosphor material that has a photo-luminescent (PL) and cathode-luminescent (CL) properties with intensive green light emission at 520 nm. The particles consisting of SiO2@Zn2SiO4:Mn (SiO2 core-Zn2SiO4:Mn shell) were synthesized via colloidal process and forced precipitation. After drying, the Zn/Mn precipitates were coated on the surface of SiO2 particles. The Zn/Mn precipitates reacted with SiO2 and transformed to Zn2SiO4:Mn by suitable calcination. The microstructure, crystalline phase, and luminescent characteristics of the products were studied. Besides, a CL device consisting of the core-shell powder was characterized.  相似文献   

10.
The energy transfer processes in Lu2SiO5:Ce3+ luminescence was investigated through the temperature dependent luminescence under excitation with VUV-UV. Ce1 center emission peaking at 393 and 422 nm and Ce2 center emission peaking at 462 nm were observed. Ce2 center emission is enhanced with the temperature, which can be explained by the rate of energy transfer from Ce1 center increases when the temperature rises. The Ce1 emission shows the thermal quenching effect under the direct excitation of Ce3+ at 262 nm. However, under the interband excitation of 183 nm, the Ce1 center emission exhibits undulating temperature dependence. This is because the emission is governed by thermal quenching and possible thermal enhancement of the transport of free carriers with the rising temperature.  相似文献   

11.
Core/shell nanoparticles consisting of a magnetic core of zinc-substituted manganese ferrite (Mn0.4Zn0.6Fe2O4) and a shell of silica (SiO2) are prepared by a sol-gel method using tetraethyl orthosilicate (TEOS) as a precursor material for silica and salts of iron, manganese and zinc as the precursor of the ferrite. Three weight percentages of the shell materials of SiO2 are used to prepare the coated nanoparticles. The X-ray diffractograms (XRD) of the coated and uncoated magnetic nanoparticles confirmed that the magnetic nanoparticles are in their mixed spinel phase in an amorphous matrix of silica. Particles sizes of the samples annealed at different temperatures are estimated from the width of the (3 1 1) line of the XRD pattern using the Debye-Sherrer equation. The information regarding the crystallographic structure together with the particles sizes extracted from the high-resolution transmission electron microscopy (HRTEM) of a few selected samples are in agreement with those obtained from the XRD. HRTEM observations revealed that particles are coated with silica. The calculated thickness is in agreement with that obtained from the HRTEM pictures. Hysteresis loops observed in the temperature range 300 down to 5 K and Mössbauer spectra at room temperature indicate superparamagnetic relaxation of the nanoparticles.  相似文献   

12.
Nanocrystalline Y2Si2O7:Eu phosphor with an average size about 60 nm is easily prepared using silica aerogel as raw material under ultrasonic irradiation and annealing temperature at 300-600 °C and this nanocrystalline decomposes into Y2O3:Eu and silica by heat treatment at 700-900 °C. The excitation broad band centered at 283 and 254 nm results from Eu3+ substituting for Y3+ in Y2Si2O7 and Y2O3/SiO2, respectively. Compared with Y2O3:Eu/SiO2 crystalline, the PL excitation and emission peaks of Y2Si2O7:Eu nanocrystalline red-shift and lead to the enhance of its luminescence intensity due to the different chemical surroundings of Eu3+ in above nanocrystallines. The decrease of PL intensity may be ascribed to quenching effect resulting from more defects in Y2O3:Eu/SiO2 crystalline.  相似文献   

13.
Ni0.53Cu0.12Zn0.35Fe2O4/SiO2 nanocomposites with different weight percentages of NiCuZn ferrite dispersed in silica matrix were prepared by microwave-hydrothermal method using tetraethylorthosilicate as a precursor of silica, and metal nitrates as precursors of NiCuZn ferrite. The structure and morphology of the composites were studied using X-ray diffraction and scanning electron microscopy. The structural changes in these samples were characterized using Fourier Transform Infrared Spectrometer in the range of 400-1500 cm−1. The bands in the range of 580-880 cm−1 show a slight increase in intensity, which could be ascribed to the enhanced interactions between the NiCuZnFe2O4 clusters and silica matrix. The effects of silica content and sintering temperature on the magnetic properties of Ni0.53Cu0.12Zn0.35Fe2O4/SiO2 nanocomposites have been studied using electron spin resonance and vibrating sample magnetometer.  相似文献   

14.
Divalent europium-activated strontium orthosilicate Sr2SiO4:Eu2+ and Mg0.1Sr1.9SiO4:Eu2+ phosphors were synthesized through the solid-state reaction technique. Their luminescent properties under ultraviolet excitation were investigated. The X-ray diffraction (XRD) results show that these phosphors are of α′-Sr2SiO4 phase with a trace of β-Sr2SiO4. Doping of Eu2+ ion into the crystal lattice results in the lattice constant being expended, while Mg2+ makes the lattice constant shrinking. A solid solution with the same crystal structure is formed when Eu2+ or Mg2+ substitutes part of Sr2+ ions and occupies the same lattice sites. The Sr2SiO4:Eu2+ phosphors show two emission spectra peaked at 535 and 473 nm originated from the 5d-4f transition of Eu2+ ion doped in two different Sr2+ sites in the host lattice. By substitution of 0.1 mol of Sr2+ with Mg2+, these two emission bands are tuned to be in the blue and yellow region (459 and 564 nm for Mg0.1Sr1.88SiO4:Eu0.02), respectively. The tuning effect is discussed. With a combination of the blue and yellow emission bands the phosphors show white color, indicating that these phosphors may become promising phosphor candidates for white light-emitting diodes (LEDs).  相似文献   

15.
This report presents the luminescence properties of Ce3+ and Pr3+ activated Sr2Mg(BO3)2 under VUV-UV and X-ray excitation. The five excitation bands of crystal field split 5d states are observed at about 46 729, 44 643, 41 667, 38 314 and 29 762 cm−1 (i.e. 214, 224, 240, 261 and 336 nm) for Ce3+ in the host lattice. The doublet Ce3+ 5d→4f emission bands were found at about 25 840 and 24 096 cm−1 (387 and 415 nm). The influence of doping concentration and temperature on the emission characteristics and the decay time of Ce3+ in Sr2Mg(BO3)2 were investigated. For Pr3+ doped samples, the lowest 5d excitation band was observed at about 42017 cm−1 (238 nm), a dominant band at around 35714 cm−1 (280 nm) and two shoulder bands were seen in the emission spectra. The excitation and emission spectra of Ce3+ and Pr3+ were compared and discussed. The X-ray excited luminescence studies show that the light yields are ∼3200±230 and ∼1400±100 photons/MeV of absorbed X-ray energy for the samples Sr1.86Ce0.07Na0.07Mg(BO3)2 and Sr1.82Pr0.09Na0.09Mg(BO3)2 at RT, respectively.  相似文献   

16.
The emission spectra of Lu2SiO5:Ce single crystal under the excitation of 266 nm laser were investigated. The emission spectra of LSO single crystal show no temperature quenching from 20 to 300 K, under the excitation of 266 nm laser with 2 mJ pulse energy. With rising temperature, the Ce1 emission is slightly decreased, while the Ce2 emission is slightly increased. These results show the emissions of Ce1 and Ce2 is not only dependent on the concentration ratio but also influenced by the possible energy transfer processes, including Ce1 to Ce2, intrinsic STHs to Ce2 and the phonon-assisted transfer processes. The spectral thermal broadening and the spectral overlap become evident at high temperature, leading to the enhancement of energy transfer. When the excitation power lowers, the ratio of Ce1 and Ce2 emission increases, and is close to the Xe lamp ultraviolet (UV) excitation, suggesting that the energy transfer from Ce1 center to Ce2 center may be also dependent on the excitation power.  相似文献   

17.
Radioluminescence and thermally stimulated luminescence measurements on Lu2O3, Lu2SiO5 (LSO) and Lu2SiO5:Ce3+ (LSO:Ce) reveal the presence of intrinsic ultraviolet luminescence bands. Characteristic emission with maximum at 256 nm occurs in each specimen and is attributed to radiative recombination of self-trapped excitons. Thermal quenching of this band obeys the Mott-Seitz relation yielding quenching energies 24, 38 and 13 meV for Lu2O3, LSO and LSO:Ce, respectively. A second intrinsic band appears at 315 nm in LSO and LSO:Ce, and at 368 nm in Lu2O3. Quenching curves for these bands show an initial increase in peak intensity followed by a decrease. Similarity in spectral peak position and quenching behavior indicate that this band has a common origin in each of the samples and is attributed to radiative recombination of self-trapped holes, in agreement with previous work on similar specimens. Comparison of glow curves and emission spectra show that the lowest temperature glow peaks in each specimen are associated with thermal decay of self-trapped excitons and self-trapped holes. Interplay between the intrinsic defects and extrinsic Ce3+ emission in LSO:Ce is strongly indicated.  相似文献   

18.
Au/SiO2 nanocomposite films were prepared by radio frequency sputtering technique and annealing. The above nanocomposite films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and atomic force microscopy (AFM). The surface of the nanocomposite films was uniform with the particle diameter of 100-300 nm. The size of Au crystallites increased on increasing annealing time. The luminescent behavior of the nanocomposite films was characterized by photoluminescence (PL) with different excitation wavelengths. Two emission peaks at around 525 nm and 560 nm were observed with the excitation wavelength at 325 nm. An intensive emission peak at around 325 nm was observed with the excitation wavelength at 250 nm, which is related to the defective structure of the amorphous SiO2 layer because of oxygen deficiency, and could be applied to many fields, such as ultraviolet laser and ultraviolet detector.  相似文献   

19.
Mn-doped Zn2SiO4 phosphors with different morphology and crystal structure, which show different luminescence and photoluminescence intensity, were synthesized via a low-temperature hydrothermal route without further calcining treatment. As-synthesized zinc silicate nanostructures show green or yellow luminescence depending on their different crystal structure obtained under different preparation conditions. The yellow peak occurring at 575 nm comes from the β-phase zinc silicate, while the green peak centering at 525 nm results from the usual α-phase zinc silicate. From photoluminescence spectra, it is found that Zn2SiO4 nanorods have higher photoluminescence intensity than Zn2SiO4 nanoparticles. It can be ascribed to reduced surface-damaged region and high crystallinity of nanorods.  相似文献   

20.
The luminescent properties of alkaline earth orthosilicates M2SiO4 (M=Ba, Sr, Ca) doped with Eu2+ ions are investigated. Two emission bands are assigned to the f-d transitions of Eu2+ ions doped into two different cation sites in host lattices confirmed by electron paramagnetic resonance signal. Two emission bands show the different emission color variation with substituting M2+ cations with smaller cations. This behavior is discussed in terms of two competing factors of the crystal field strength and covalence. Also the decay times are in order of 600-1000 ns. These phosphors with maximum excitation of around 370 nm can be applied as a color-tunable phosphor for light-emitting diode based on ultraviolet chip/phosphor technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号