首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the Li-ion battery anode properties of several kinds of mesoporous composites of carbon and titanium dioxides (titania, TiO2) prepared by tri-constituent co-assembly method. The maximum reversible capacity (197 mAh/g) at current density of 50 mA/g was obtained for the composite of TiO2:carbon=7:3 calcined at 600 °C. It was also found that the composite maintained the high reversible capacity as large as 109 mAh/g even at the high current density of 1000 mA/g.  相似文献   

2.
Anode substrate has a great effect on screen-printing fabrication of yttria-stabilized zirconia (YSZ) electrolyte film and cell performance. In this work, NiO+YSZ anode substrate was prepared by a conventional ceramic sintering method, on which dense YSZ electrolyte film was successfully fabricated by screen-printing method. Microstructure of the anode substrate and cell performance were investigated. The optimal amount of addition of starch to the anode substrate was 20 wt%. The optimal temperature for pre-sintering of NiO powder was 800 °C. A single cell with the NiO powder pre-sintered at 800 °C exhibited the highest power density of 0.95 W cm−2 at 700 °C.  相似文献   

3.
Sm-doped Ceria (SDC) electrolyte film was successfully fabricated on anode substrate of NiO-SDC by screen-printing. Some technical parameters for fabrication were investigated and optimized, including printing times, ink composition and sintering temperature. Scanning electron microscope (SEM) measurement was done to check the microstructures of SDC film and single cell. The parameters greatly affected the quality of SDC film and cell performance. The single cell with the optimum parameters exhibited an OCV of 0.82 V and a power density of 0.5 W/cm2 at 600 °C.  相似文献   

4.
Bismuth telluride thin films have been grown by close space vapor transport (CSVT) technique as a function of substrate temperature (Tsub). Both N- and P-type samples can be obtained by this method which is a relatively simple procedure, which makes the method interesting for technological applications. The samples were deposited onto amorphous glass and polycrystalline CdTe film substrates in the substrate temperature range 300-425 °C, with a fixed gradient between source and substrate of 300 °C. The influence of the type of substrate and substrate temperature in the CSVT chamber on the physical properties of the films is presented and discussed.  相似文献   

5.
The authors report the fabrication of ZnO-based metal-oxide-semiconductor field effect transistors (MOSFETs) with a high quality SiO2 gate dielectric by photochemical vapor deposition (photo-CVD) on a sapphire substrate. Compared with ZnO-based metal-semiconductor FETs (MESFETs), it was found that the gate leakage current was decreased to more than two orders of magnitude by inserting the photo-CVD SiO2 gate dielectric between ZnO and gate metal. Besides, it was also found that the fabricated ZnO MOSFETs can achieve normal operation of FET, even operated at 150 °C. This could be attributed to the high quality of photo-CVD SiO2 layer. With a 2 μm gate length, the saturated Ids and maximum transconductance (Gm) were 61.1 mA/mm and 10.2 mS/mm for ZnO-based MOSFETs measured at room temperature, while 45.7 mA/mm and 7.67 mS/mm for that measured at 150 °C, respectively.  相似文献   

6.
A comparative investigation was carried out on carbon black and multiwalled carbon nanotubes as conductive additives in spherical natural graphite for lithium ion batteries. Scanning electron microscopy images showed that carbon nanotubes interlaced graphite particles in series to form a three-dimensional network. The constant current charge-discharge experiments showed that carbon nanotubes were more effective in improving reversible capacity and cycle stability. The reversible capacity was improved to 366 mAh/g and the cycle stability was improved effectively when carbon nanotubes were used. The research is of potential interest to the application of carbon nanotubes as conductive additives in anode materials for high-power lithium ion batteries.  相似文献   

7.
We report NiO nanowall thin films prepared by a facile hydrothermal synthesis method and their electrochromic application. The as-prepared porous nanowall NiO thin films show a highly porous structure built up by many interconnected nanoflakes with a thickness of about 30 nm. The electrochromic performances of the NiO films are characterized by means of UV–vis spectroscopy and cyclic voltammetry (CV) measurements. The effect of the annealing temperature on electrochromic properties is discussed. The NiO nanowall film annealed at 300 °C exhibits much better electrochromic performance than those counterparts annealed at higher temperature. The film annealed at 300 °C exhibits a noticeable electrochromism with reversible color changes from transparent to brown dark and presents a transmittance variation with 77% at 550 nm. The NiO nanowall film also shows good reaction kinetics with fast switching speed, and the coloration and bleaching times are 3 s and 4 s, respectively. The improved electrochromic performances are due to the porous morphological characteristics with fast ion and electron transfer resulting in fast reaction kinetics and high color contrast.  相似文献   

8.
The polytetrafluoroethylene (PTFE) and carboxymethyl cellulose (CMC) film is separately coated on the surface of the metal hydride (MH) and Ni(OH)2 electrodes to obtain the electrodes with hydrophobic or hydrophilic surface. The effects of the surface treatment on the oxygen and hydrogen evolution from the electrodes are studied by using cyclic voltammetry tests. Although the positive and negative active materials of the Ni-MH batteries show a lower self-decomposition rate after the CMC treatment, the self-discharge rate of the batteries show little change. On the contrary, the self-discharge rate of the batteries decreases from 35.9% to 27.1% by using the PTFE-treated Ni(OH)2 electrodes, which might be related to the suppression of the reaction between NiOOH and H2 by the hydrophobic film.  相似文献   

9.
The functionalization of carbon nanotubes (CNTs) was carried out by using different chemical treatment methods. These functionalized CNTs were characterized by TEM image and FT-IR spectra. The CNT electrodes are measured by thermal resistivity and cyclic voltammetry experiments. The results showed that two important factors controlled the electrochemical properties of the CNT film electrode: one is the active functional group; another is activation energy of the CNT film. From our experiments, we have found the electrode of 10 min nitric acid treated CNTs have the optimal peaks in relation to carboxylic acids, the highest redox peak currents, the biggest value of k0 and well-defined quasi-reversible voltammograms for redox of iron couples, in which the two factors best match.  相似文献   

10.
Porous Ni-YSZ (YSZ—yttria-stabilized zirconia) films were fabricated by reactive co-sputtering of a Ni and a Zr-Y target, followed by sequentially annealing in air at 900 °C and in vacuum at 800 °C. The Ni-YSZ films comprised small grains and pores that were tens of nanometers in size. The porous Ni-YSZ films were used as an anode on one side of a YSZ electrolyte disc and a La0.7Sr0.3MnO3 thick film was used as a cathode on the other side of the disc to form solid oxide fuel cells (SOFCs). The voltage-current curves of the SOFCs with single- and a triple-layered porous anodes were measured in a single-chamber configuration, in a mixture of CH4 and air (CH4:O2 volume ratio=2:1). The maximum power density of the SOFC using the single-layered porous Ni-YSZ thin films as the anode was 0.38 mW cm−2, which was lower than that of 0.76 mW cm−2, obtained using a screen-printed Ni-YSZ thick anode. The maximum power density of the SOFC with a thin anode was increased, but varied between 0.6 and 1.14 mW cm−2 when a triple-layered porous Ni-YSZ anode was used.  相似文献   

11.
Size-dependent thermodynamic parameters, such as Gibbs free energy, enthalpy and entropy, for the transition of a Ni nanofilm to catalyst particles for subsequent carbon nanotube growth have been explored. In this investigation, we consider the derived equations of the size-dependent melting temperature of nanosolids based on our previous works. Using this thermodynamic approach, it is found that the diameter of Ni particles is 3 times greater than the thickness of the original film. From the critical and stable sizes of transformed Ni nanoparticles, a minimum film thickness for transformation of film to nanoparticles was obtained. Our predictions are in good agreement with experimental results.  相似文献   

12.
A comparative study has been carried out on anodes made from carbon nanostructures of five different morphologies—single walled, double walled and multiwalled carbon nanotubes (with two different diameters), and carbon nanofibers. The specific area of the samples of these carbon nanostructures has been determined and their structure and morphology have been characterized by microscopy, X-ray diffraction and Raman spectroscopy. Depending on the morphology and the size of the nanostructures in the anode, the reversible capacity obtained ranges from 450 to 600 mAh g−1 and the coulombic efficiency is in the range of 85–98% after 12 cycles. Increasing the surface area, both inside and outside for the tubes of a nano-size, gives rise to increased number of surface sites, which may be intercalated reversibly leading to increased specific charge capacity. Formation of the solid electrolyte interface layer covers a part of these surface sites as well as results in capacity fading, which also increases with increasing surface area. Increased defect sites responsible for elastic scattering in Raman spectra do not appear to have deciding influence on either enhanced capacity or capacity fading. Nano-sized constituent in the electrode appears to improve mechanical characteristics ensuring good mechanical integrity on cycling and high coulombic efficiency.  相似文献   

13.
Boron carbonitride (BCN) films have been synthesized on Si(1 0 0) substrate by radio frequency plasma enhanced chemical vapor deposition using tris-(dimethylamino)borane (TDMAB) as a precursor. The deposition was performed at the different RF powers of 400-800 W, at the working pressure of 2×10−1 Torr. The formation of the sp2-bonded BCN phase was confirmed by Fourier transform infrared spectroscopy. X-ray photoelectron spectroscopy measurements showed that B atoms were bonded to C and N atoms to form the BCN atomic hybrid configurations with the chemical compositions of B52C12N36 (sample 1; prepared at the RF power of 400 W), B52C10N38 (sample 2; at 500 W) and B46C18N36 (sample 3; at 800 W), respectively. Near-edge X-ray absorption fine structure (NEXAFS) measurements indicated that B atoms were bonded not only to N atoms but also to C atoms to form various configurations of sp2-BCN atomic hybrids. The polarization dependence of NEXAFS suggested that the predominant hybrid configuration of sp2-BCN films oriented in the direction perpendicular to the Si substrate.  相似文献   

14.
Titanium oxide inorganic ion exchange material was synthesized by hydrolysis with water and ammonia solution. Structural feature of the synthesized titanium oxide was analyzed using X-ray diffraction, X-ray fluorescence and infrared spectrometer technique. Tentative formula of titanium oxide was determined and written as TiO2·0.58H2O. Titanium oxide films were deposited on glass substrates by means of an electron beam evaporation technique at room temperature from bulk sample. The films were annealed at 250, 350, 450, and 550 °C temperatures. Transmittance, reflectance, optical energy gap, refractive index and extinction coefficient were investigated. The transmittance values of 85% in the visible region and 88% in the near infrared region have been obtained for titanium oxide film annealed at 550 °C. Kubelka-Munk function was used to evaluate the absorption coefficient which was used to determine the optical band gap. It was found that the optical band gap increases with increasing annealing temperature whereas the refractive index and extinction coefficient decreases.  相似文献   

15.
Multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) have been functionalized by dielectric barrier discharge (DBD) in air. The extent of functionalization of MWCNTs and GNPs reaches a maximum at the delivered discharge energy of 720 and 240 J mg−1, respectively. Further exposure to plasma leads to reduction of functional groups from the surface of the treated nanomaterials. It has also been demonstrated that DBD plasma does not produce dramatic structural changes in MWCNTs, while flakes of the treated GNPs become thinner and smaller in the lateral size. Conductive thin films, obtained by drop casting a solution of the treated nanomaterials in N-methyl-1-pyrrolidone on poly(methyl methacrylate) substrate, show significantly lower sheet resistance.  相似文献   

16.
Disordered carbonaceous materials have been obtained by pyrolysis of coffee shells at 800 and 900 °C with pore-forming substances such as KOH and ZnCl2. X-ray diffraction studies revealed a carbon structure with a large number of disorganized single layer carbon sheets. The structure and morphology of the materials have been greatly varied upon the addition of porogens. The prepared carbon materials have been subjected to cycling studies. The KOH-treated products offered higher capacity with improved stability than those with untreated and ZnCl2-treated one.  相似文献   

17.
Effect of micron-sized MgO particles dispersion on poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF–HFP) based magnesium-ion (Mg2+) conducting gel polymer electrolyte has been studied using various electrical and electrochemical techniques. The composite gel films are free-standing and flexible with enough mechanical strength. The optimized composition with 10 wt% MgO particles offers a maximum electrical conductivity of ∼6×10−3 S cm−1 at room temperature (∼25°C). The Mg2+ ion conduction in gel film is confirmed from cyclic voltammetry, impedance spectroscopy and transport number measurements. The applicability of the composite gel electrolyte to a rechargeable battery system has been examined by fabricating a prototype cell consisting of Mg (or Mg–MWCNT composite) and V2O5 as negative and positive electrodes, respectively. The rechargeability of the cell has been improved, when Mg metal was substituted by Mg–MWCNT composite as negative electrode.  相似文献   

18.
Thermal reactive diffusion coating of vanadium carbide on DIN 1.2367 die steel substrate was performed in a powder mixture consisting of ferro-vanadium, ammonium chloride, alumina and naphthalene at 950, 1050 and 1150 °C for 1-5 h. The carbide layers were characterized by means of microstructure, microhardness, X-ray diffraction and chemical analysis. Depending on the coating process time and temperature, the thickness of the vanadium carbide layer formed on the substrate ranged from 2.3 to 23.2 μm. The hardness of vanadium carbide layers was about 2487 HV. Dry wear tests for uncoated and coated DIN 1.2367 die steel were carried out on pin-on-disk configuration and at a sliding speed of 0.13 m/s. The results showed superior wear properties of the coated samples. The kinetics of vanadium carbide coating by the pack method was also studied and the activation energy for the thermo-reactive diffusion process was estimated to be 173.2 kJ/mol.  相似文献   

19.
In this work, the influence of cathodic (Red) and anodic (Ox) pre-treatment on boron doped diamond (BDD) films grown with different sp2/sp3 ratios was systematically studied. The sp2/sp3 ratios were controlled by the addition of CH4 of 1,3,5 and 7 sccm in the gas inlet during the growth process. The electrodes were treated in 0.5 mol L−1 H2SO4 at −3 and 3 V vs Ag/AgCl, respectively, for 30 min. The electrochemical response of BDD films was investigated using electrochemical impedance spectroscopy (EIS) and Mott–Schottky Plot (MSP) measurements. Four film sample sets were produced in a hot filament chemical vapor deposition reactor. During the growth process, an additional H2 line passing through a bubbler containing the B2O3 dissolved in methanol was used to carry the boron. The scanning electron microscopy morphology showed well faced films with a small decrease in their grain size as the CH4 concentration increased. The Raman spectra depicted a pronounced sp2 band, mainly for films with 5 and 7 sccm of CH4. MSP showed a decrease in the acceptor concentration as the CH4 increased indicating the CH4 influence on the doping process for Red–BDD and Ox–BDD samples. Nonetheless, an apparent increase in the acceptor concentrations for both Ox–BDD samples was observed compared to that for Red–BDD samples, mainly attributed to the surface conductive layer (SCL) formation after this strong oxidation process. The EIS Nyquist plots for Red–BDD showed a capacitance increase for the films with higher sp2 content (5 and 7 sccm). On the other hand, the Nyquist plots for Ox–BDD can be described as semicircles near the origin, at high frequencies, where their charge transfer resistance strongly varied with the sp2 increase in such films.  相似文献   

20.
Thin films of Ba0.8Sr0.2TiO3 have been deposited on p-type Si substrate by radio frequency magnetron sputtering. Polycrystalline bulk Ba0.8Sr0.2TiO3 sample has also been studied for comparison. X-ray diffraction patterns reveal that both the bulk sample and thin films are polycrystalline without any preferential orientation and belong to paraelectric cubic phase. We have compared the room temperature Raman and IR spectra of powder and thin films (both annealed and as-deposited) of Ba0.8Sr0.2TiO3. The extra feature in the Raman spectrum for the annealed film has been explained as due to the presence of intergrain stresses from the submicron size grains in it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号