首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, beta-gallium oxide (β-Ga2O3) nanowires, nanobelts, nanosheets, and nanograsses were synthesized through microwave plasma of liquid phase gallium containing H2O in Ar atmosphere using silicon as the substrate. The nanowires with diameters of about 20-30 nm were several tens of microns long and the nanobelts with thickness of about 20-30 nm were tens to hundreds of microns long. The morphology and structure of products were analyzed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and X-ray diffraction (XRD). These results showed that multiple nucleation and growth of β-Ga2O3 nanostructures could easily occur directly out of liquid gallium exposed to appropriate H2O and Ar in the gas phase. The growth process of β-Ga2O3 nanostructures may be dominated by VS (vapor-solid) mechanism.  相似文献   

2.
In this paper, we report the hydrothermal preparation of Cd(OH)2 nanowires and further conversion to CdO nanobelts, CdS nanowires and CdSe nanoparticles through thermal treatment, solvothermal and mixed-solvothermal routes, respectively. The as-obtained products were characterized by means of powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FEMSEM). Research showed that four cadmium compounds were good photocatalysts for the degradation of organic dyes such as Safranine T and Pyronine B, under irradiation of 365 nm UV light. The order of catalytic activity of different materials was found to be Cd(OH)2<CdO<CdS<CdSe.  相似文献   

3.
In-doped Ga2O3 zigzag-shaped nanowires and undoped Ga2O3 nanowires have been synthesized on Si substrate by thermal evaporation of mixed powders of Ga, In2O3 and graphite at 1000 °C without using any catalyst via a vapor-solid growth mechanism. The morphologies and microstructures of the products were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and photoluminescence spectroscopy (PL). The nanowires range from 100 nm to several hundreds of nanometers in diameter and several tens of micrometers in length. A broad emission band from 400 to 700 nm is obtained in the PL spectrum of these nanowires at room temperature. There are two blue-emission peaks centering at 450 and 500 nm, which originate from the oxygen vacancies, gallium vacancies and gallium-oxygen vacancy pairs.  相似文献   

4.
Nanoneedles, nanorods of B-VO2, and vanadium oxide nanotubes with high crystallinity were synthesized via a one-step hydrothermal treatment using crystalline V2O5 as a precursor and aromatic amines (C6H5-(CH2)n-NH2 with n=0, 1, 3) as structure-directing templates. Samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), thermal analysis, nitrogen adsorption/desorption isotherms and infrared spectroscopy. Nanoneedles, 0.5-5 μm in length and about 50 nm in average diameter and VO2(B) nanorods about 20-100 nm wide and up to 2.5 μm long, have been obtained. The inner and the outer diameters of the vanadium oxide nanotubes vary, respectively, between 15-25 and 70-100 nm with a length up to 4 μm.  相似文献   

5.
A laser-induced forward transfer technique has been applied for the maskless patterning of amorphous V2O5 thin films. A sheet beam of a frequency doubled (SHG) Q-switched Nd:YAG laser was irradiated on a transparent glass substrate (donor), the rear surface of which was pre-coated with a vacuum-deposited V2O5 180 nm thick film was either in direct contact with a second glass substrate (receiver) or a 0.14 mm air-gap was maintained between the donor film and the receiving substrate. Clear, regular stripe pattern of the laser-induced transferred film was obtained on the receiver. The pattern was characterized using X-ray diffraction (XRD), optical absorption spectroscopy, scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDAX), atomic force microscopy (AFM), etc.  相似文献   

6.
Flower-like Bi12TiO20 hierarchical nanostructures composed of numerous nanobelts were synthesized at 180 °C within 1 h by a microwave-assisted hydrothermal method in the presence of cetyltrimethylammonium bromide (CTAB) for the first time. The as-prepared products were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet–visible (UV–vis) absorption spectroscopy. Furthermore, the hierarchical Bi12TiO20 nanostructures exhibited higher photocatalytic activities in the degradation of Rhodamine B under visible-light irradiation than that of the samples prepared without CTAB. In addition, the role of CTAB cationic surfactant has been investigated thoroughly and a possible mechanism is proposed.  相似文献   

7.
Hydrothermal synthesis and characterization of nanocrystalline Zn-Mn spinel   总被引:1,自引:0,他引:1  
Hydrothermal method had been used to successfully synthesize the nanocrystalline spinel zinc manganese oxide (ZnMn2O4) directly from Zn(CH3COO)2·2H2O, NaOH, Mn(NO3)2 and H2O2 at 170 °C for the reaction time of 48 h. The effects of the synthesis conditions, such as the Zn/Mn molar ratio, the reaction temperature, the reaction time, the zinc source and the concentrations of NaOH and H2O2, on the formation of the Zn-Mn spinel were investigated. The products were characterized by means of X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The results indicated that the compositions of the Zn-Mn spinel with the tetragonal structure were Zn1.14Mn1.86O4. Scanning electron microscope (SEM) and transmission electron microscopy (TEM) images showed that the products at 170 °C were with square-shaped nanocrystalline spinel with the particle size of about 20-50 nm. The thermal behaviors of the products were investigated by thermogravimetric analysis (TG).  相似文献   

8.
Cobalt oxalate was used as a precursor to prepare Co3O4 nanorods by thermal decomposition. The combinations of triphenylphosphine and oleylamine were added as surfactants to control the morphology of the particles. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The diameters of Co3O4 nanorods are 20 nm and the average lengths are around 500 nm. The hysteresis loops of the obtained samples reveal the ferromagnetic behaviors, the enhanced coercivity (Hc) and decreased saturation magnetization (Ms) in contrast to their respective bulk materials. The study provides a simple and efficient route to synthesize Co3O4 nanorods at low temperature.  相似文献   

9.
VO2 (B) nanostructures were synthesized via a facile hydrothermal process using V2O5 as source material and oxalic acid as reductant. Three nanostructures of nanorods, nanocarambolas and nanobundles were found existing in the products, and a continuous changing of morphology was found in the synthesis process, during which the proportion of these three types of nanostructures can be adjusted by altering the concentrations of oxalic acid. The microstructures were evaluated using X-ray diffraction and scanning and transmission electron microscopies, respectively. FE properties measurement of these three types of nanostructures showed that the nanobundles have the best field emission performance with a turn-on field of ∼1.4 V/μm and a threshold field of ∼5.38 V/μm. These characteristics make VO2 (B) nanostructures a competitive cathode material in field emission devices.  相似文献   

10.
The mesoporous N, S-codoped TiO2(B) nanobelts are synthesized via hydrothermal synthesis and post-treatment, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption measurements (BET), X-ray photoelectron spectra (XPS), and UV-vis diffuse reflectance spectra (DRS). The results show that the prepared samples are mesoporous structured and exhibit stronger absorption in the visible light region with red shift in the absorption edge. The photocatalytic activity of N, S-codoped mesoporous TiO2(B) nanobelts is evaluated by the photocatalytic photodegradation of potassium ethyl xanthate (KEX) under visible light irradiation. It is found that the photocatalytic activity of the prepared samples increases with increasing the molar ratio of thiourea to Ti (R). At R = 3, the photocatalytic activity of the N, S-codoped TiO2(B) sample TBLTS-3 reaches a maximum value. With further increasing R, the photocatalytic activity of the sample decreases. The high photocatalytic activity of N, S-codoped TiO2(B) nanobelts can be attributed to the balance between strong absorption in visible light region and low recombination rate of electron/hole pairs.  相似文献   

11.
A new method was applied to prepare GaN nanorods. In this method, gallium oxide (Ga2O3) gel was firstly formed by a sol-gel processing using gallium ethanol, Ga(OC2H5)3, as a new precursor. GaN nanorods were successfully synthesized after annealing of the Ga2O3 gel at 1000 °C for 20 min in flowing ammonia. The as-prepared nanorods were confirmed as single crystalline GaN with wurtzite structure by X-ray diffraction (XRD), selected-area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM). Transmission electron microscopy (TEM) displayed that the GaN nanorods were straight and smooth, with diameters ranging from 200 nm to 1.8 μm and lengths typically up to several tens of microns. When excited by 280 nm light at room temperature, the GaN nanorods had a strong ultraviolet luminescence peak located at 369 nm and a blue luminescence peak located at 462 nm, attributed to GaN band-edge emission and the existence of the defects or surface states, respectively.  相似文献   

12.
LiFePO4/C cathode materials were prepared from different lithium and iron sources, using glucose as the carbon source and the reducing agent, via a solid state reaction. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), galvanostatic charge-discharge test and cyclic voltammetry (CV). The results showed that the LiFePO4/C is olivine-type phase, and composed of relatively large particles of about 400 nm and some nano-sized particles, which favor the electronic conductivity. The LiFePO4/C cathode material synthesized from Li2CO3 and Fe2O3 had the smallest particles and the highest uniformity. It delivered the capacity of 145.8 mA h/g at 0.2 C, and had good reversibility and high capacity retention. The precursor of LiFePO4/C was characterized by thermogravimetry (TG) to discuss the crystallization formation mechanism of LiFePO4.  相似文献   

13.
Single-crystalline gallium nitride nanobelts have been synthesized through the reaction of gallium vapor with flowing ammonia using nickel as a catalyst. The as-synthesized products were characterized using X-ray powder diffraction (XRD), scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and selected-area electron diffraction (SAED). XRD and SAED results revealed that the products are pure, single-crystalline GaN with hexagonal structure. The widths and thickness of the nanobelts ranged from 80 to 200 nm, and 10 to 30 nm, respectively. The lengths were up to several tens of micrometers. The nanobelts had smooth surface with no amorphous sheath, and a sharp-tip end. The growth mechanism of nanobelts was discussed.  相似文献   

14.
NiFe2O4/NiO nanocomposite thin films have been successfully prepared through a facile route using nickel iron layered double hydroxide (NiFe-LDH) as a single-source precursor. This synthetic approach mainly involves the formation of NiFe-LDH film by casting the slurry of NiFe-LDH precursor on the α-Al2O3 substrate, followed by high-temperature calcination. The composition, microstructure and properties of the films were characterized in detail by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX) and vibrating sample magnetometer (VSM). The results indicate that NiFe2O4/NiO composite film was composed of granules with diameter less than 100 nm, and the thickness of the film was in the range 1-2 μm. The magnetization of the film can be tuned by alternating the Ni/Fe molar ratio of LDH precursor. In addition, the method developed should be easily extended to fabricate other MFe2O4/MO composite film systems with specific applications just by an appropriate combination of divalent/trivalent composition in the precursor of LDHs.  相似文献   

15.
The effect of surface roughness on subsequent growth of vanadium pentoxide (V2O5) nanowires is examined. With increasing surface roughness, both the number density and aspect ratio of V2O5 nanowires increase. Structures and morphology of obtained nanowires were characterized by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The nanowires are approximately 40-90 nm in diameter and 2 μm in length. X-ray diffraction (XRD) analysis indicates that the obtained nanowires are orthorhombic structure with (0 0 1) out-of-plane orientation. The luminescence property of V2O5 nanowires has been investigated by photoluminescence (PL) at 150 K and 300 K. PL results show intense visible emission, which is attributed to different inter-band transitions between the V 3d and O 2p band. This simple fabrication approach might be useful for fabrication of large area V2O5 nanowires arrays with high density.  相似文献   

16.
17.
Transparent conducting indium oxide (In2O3) thin films have been prepared on glass substrates by the simple sol-gel-spin coating technique. These films have been characterized by X-ray diffraction, resistivity and Hall effect measurements, optical transmission, scanning electron microscopy and atomic force microscopy for their structural, electrical, optical and morphological properties. The influence of spin parameters, number of coating, process temperature on the quality of In2O3 films are studied. In the operating range of deposition, 400-475 °C, all the films showed predominant (2 2 2) orientation. Films deposited at optimum process conditions exhibited a resistivity of 2×10−2 Ω cm along with the average transmittance of about 80% in the visible spectral range (400-700 nm).  相似文献   

18.
We report the preparation of a novel kind of α-Fe2O3 hollow core/shell hierarchical nanostructures self-assembled by nanosheets. A green precursor powder is first prepared using nontoxic and inexpensive FeCl3 and urea in ethylene glycol by a surfactant-free solvothermal method at 160 °C for 15 h. The α-Fe2O3 hollow core/shell hierarchical nanostructures are obtained by the thermal treatment of the green precursor powder. The as-prepared α-Fe2O3 hollow core/shell hierarchical nanostructures are porous, and exhibit a good photocatalytic activity for the degradation of phenol. The samples are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM).  相似文献   

19.
A new self-activated yellow-emitting Zn2V2O7 phosphor was synthesized by high temperature solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed the sample with monoclinic formation of Zn2V2O7. The excitation and emission spectra indicated the phosphor can be efficiently excited by near ultraviolet (NUV) light in 220–400 nm range and exhibit a bright broad yellow emission with the highest emission intensity at 531 nm. The broad emission band from 400 to 650 nm can be attributed to the charge transfer transition in the VO4 tetrahedra, which suggests that the phosphor is a promising yellow phosphor applied for white light-emitting diodes (WLED).  相似文献   

20.
We demonstrate the production of gallium oxide (Ga2O3) nanobelts on iridium (Ir)-coated substrates by thermal evaporation of GaN powders. Scanning electron microscopy revealed that the product consisted of nanobelts with widths in the range of 100–700 nm and thicknesses less than 1/5 of the widths. X-ray diffraction and high-resolution transmission electron microscopy indicated that the nanobelts have the single-crystalline monoclinic structure of Ga2O3. The photoluminescence spectrum under excitation at 325 nm showed a broad band with a prominent emission peak around 433 nm.PACS 81.07.-b  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号