首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temperature dependence of the thermoelectric power S(T) in polycrystalline La0.67Ba0.33MnO3 has been investigated. In the ferromagnetic regime, the phonon thermoelectric power is evaluated by incorporating the scattering of phonons with impurities, grain boundaries, charge carriers and phonon. The Mott expression is used to compute the electron diffusive thermoelectric power (Scdiff.) using Fermi energy as electron-free parameter. The Scdiff infers linear temperature dependence and Sphdrag increases exponentially with temperature, which is an artefact of various operating scattering mechanisms. The behaviour of the S(T) is determined by competition among the several operating scattering mechanisms for the heat carriers and a balance between carrier diffusion and phonon drag contributions in the La0.67Ba0.33MnO3. Numerical analysis of thermoelectric power of the present model shows similar results as those revealed from experiments.  相似文献   

2.
The thermoelectric power of C, Mn, C:Li, and Al:Li substituted MgB2 single crystals has been investigated in the temperature range 10-300 K. Both the in-plane (Sab) and the out-of-plane (Sc) thermopowers are positive for the non-substituted crystal and both Sab and Sc change a sign for crystals doped with electrons where C is substituted for B in the amount larger than 5 at%. When Li is substituted for Mg, the π band rather than the σ band is doped with holes and the doping effects are much more subtle. The anisotropy ratio of the non-substituted crystal Sab/Sc≈3 and this ratio is strongly reduced by the substitution of C. Isovalent magnetic Mn ions, which substitute for Mg with a drastic reduction of Tc, do not influence the values and temperature dependences of both Sab and Sc.  相似文献   

3.
In this paper, we undertake a quantitative analysis of observed temperature-dependent in-plane normal state electrical resistivity of single crystal YBa2Cu4O8. The analysis is within the framework of classical electron–phonon i.e., Bloch-Gruneisen model of resistivity. It is based on the inherent acoustic (low frequency) phonons (ωac) as well as high frequency optical phonons (ωop), the contributions to the phonon resistivity were first estimated. The optical phonons of the oxygen breathing mode yields a relatively larger contribution to the resistivity compared to the contribution of acoustic phonons. Estimated contribution to in-plane electrical resistivity by considering both phonons i.e., ωac and ωop, along with the zero-limited resistivity, when subtracted from single crystal data infers a quadratic temperature dependence over most of the temperature range [80 ? T ? 300]. Quadratic temperature dependence of ρdiff. = [ρexp − {ρ0 + ρeph (=ρac + ρop)}] is understood in terms of electron–electron inelastic scattering. The relevant energy gap expressions within the Nambu-Eliashberg approach are solved imposing experimental constraints on their solution (critical temperature Tc). It is found that the indirect-exchange formalism provides a unique set of electronic parameters [electron–phonon (λph), electron-charge fluctuations (λpl), electron–electron (μ) and Coulomb screening parameter (μ*)] which, in particular, reproduce the reported value of Tc.  相似文献   

4.
Ion beam sputtering process was used to deposit n-type fine-grained Bi2Te3 thin films on BK7 glass substrates at room temperature. In order to enhance the thermoelectric properties, thin films are annealed at the temperatures ranging from 100 to 400 °C. X-ray diffraction (XRD) shows that the films have preferred orientations in the c-axis direction. It is confirmed that grain growth and crystallization along the c-axis are enhanced as the annealing temperature increased. However, broad impurity peaks related to some oxygen traces increase when the annealing temperature reached 400 °C. Thermoelectric properties of Bi2Te3 thin films were investigated at room temperature. The Bi2Te3 thin films, including as-deposited, exhibit the Seebeck coefficients of −90 to −168 μV K−1 and the electrical conductivities of 3.92×102-7.20×102 S cm−1 after annealing. The Bi2Te3 film with a maximum power factor of 1.10×10−3 Wm−1 K−2 is achieved when annealed at 300 °C. As a result, both structural and transport properties have been found to be strongly affected by annealing treatment. It was considered that the annealing conditions reduce the number of potential scattering sites at grain boundaries and defects, thus improving the thermoelectric properties.  相似文献   

5.
Electrical (ρ) and thermal (W) resistivities and thermal expansion coefficient (β) of Cu, Zn, Al, Pb, Ni, β-brass, Al2O3, NaCl, Si, SiO2(∥), and SiO2(⊥) were simultaneously measured with standard four-probe, absolute steady-state, and quartz dilatometer techniques. Measurements of Ni and β-brass were performed at temperatures from 300 to 1100 K and measurements of all other samples were made between 90 and 500 K. This temperature range includes the range below and above the Debye temperature (TD). The total uncertainties of the specific electrical and thermal resistivities and thermal expansion coefficient (TEC) measurements are 0.5%, 3.0%, and (1.5-4.0%), respectively. The universal linear relationship between the electrical and thermal resistivities and βΤ over the wide temperature range was found experimentally. Using the Landau criterion for convection development for ideal phonon and electron gases in the solids, the universal relations, ρph/ρ*βT and Wph/W*βT (where ρph is the phonon electrical resistivity, is the characteristic electrical resistivity, Wph is the phonon thermal resistivity, and W*=kBG/qcp is the characteristic thermal resistivity) between relative phonon electrical and phonon thermal resistivities and βΤ were derived. The derived universal relations provide a new method for estimating the kinetic coefficients (electrical and thermal resistivities) from TEC measurements.  相似文献   

6.
The p-type (Bi0.25Sb0.75)2Te3 doped with 3-12 wt% excess Te alone and n-type Bi2(Te0.94Se0.06)3 codoped with 0.017-0.026 wt% Te and 0.068-0.102 wt% I were prepared by the Bridgman method, to produce intentionally polycrystalline. Some of the as-grown specimens were annealed, in order to prepare specimens with much different ρ. These polycrystalline specimens have almost the same degree of alignment of the c plane parallel to the freezing direction. The electrical rersistivity ρ and thermal conductivity κ were measured at 298 K along the freezing direction and κ was plotted as a function of ρ. As a result, the lattice components κph obtained by subtracting the electronic component κel from the observed κ were found to decrease almost linearly with a decrease of ρ in both p- and n-type specimens, where κel was calculated using Wiedemann-Franz law. This tendency is consistent with the conventional result that κph becomes negligible small in metals. The significant decrease in κph with decrease in ρ is considered to be caused predominantly by the phonon scattering due to dopants. The relationship between κph and ρ was first clarified in the intermediate region between the metal and insulator.  相似文献   

7.
For a single-band conductor where two or more scattering mechanisms are present, each giving rise to a characteristic thermoelectric powerS n and a electrical resistivity? n the resultant thermoelectric powerS is given, as a first approximation, by\(S = \sum\limits_n {\varrho _n S_n /\varrho } \). Denoting withS 0 the characteristic thermoelectric power due to the scattering of the conduction electrons by the boundary atoms, and withS i and? i the resultant thermoelectric power and electrical resistivity arising from all other scattering mechanisms, one may writeS=S 0+? i(S i?S 0)/?. The thermoelectric powerS and the electrical resistivity? of thin layers of potassium, evaporated in a vacuum ~5·10?9 Torr on a glass substrate at 90° K temperature, were measured at different thicknesses. The variation ofS as a function of 1/? verifies the above mentioned relation. Thus, the thermoelectric power, characteristic for the scattering by potassium boundary atoms can be determined.  相似文献   

8.
The temperature-dependent resistivity and thermoelectric power of monovalent (K) doped La1−xKxMnO3 polycrystalline pellets (x=0.05, 0.10 and 0.15) between 50 and 300 K are reported. K substitution enhances the conductivity of this system. Curie temperature (TC) also increases from 260 to 309 K with increasing K content. In the paramagnetic region (T>TC), the electrical resistivity is well represented by adiabatic polaron hopping, while in the ferromagnetic region (T<TC), the resistivity data show a nearly perfect fit for all the samples to an expression containing, the residual resistivity, spin-wave and two-magnon scattering and the term associated with small-polaron metallic conduction, which involves a relaxation time due to a soft optical phonon mode. Small polaron hopping mechanism is found to fit well to the thermoelectric power (S) data for T>TC whereas at low temperatures (T<TC) in ferromagnetic region (SFM), SFM is well explained with the spin-wave fluctuation and electron–magnon scattering. Both, resistivity and thermopower data over the entire temperature range (50–300 K) are also examined in light of a two-phase model based on an effective medium approximation.  相似文献   

9.
Highly (00l)-oriented pure Bi2Te3 films with in-plane layered grown columnar nanostructure have been fabricated by a simple magnetron co-sputtering method. Compared with ordinary Bi2Te3 film and bulk materials, the electrical conductivity and Seebeck coefficient of such films have been greatly increased simultaneously due to raised carrier mobility and electron scattering parameter, while the thermal conductivity has been decreased due to phonon scattering by grain boundaries between columnar grains and interfaces between each layers. The power factor has reached as large as 33.7 μW cm−1 K−2, and the out-of-plane thermal conductivity is reduced to 0.86 W m−1 K−1. Our results confirm that tailoring nanoscale structures inside thermoelectric films effectively enhances their performances.  相似文献   

10.
We present a theory of the thermoelectric power tensor of anisotropic ferromagnetic metals with localized magnetic moments starting from the Boltzmann equation and incorporating anisotropy effects due to the lattice structure through a parameter measuring the anisotropy in the sound velocity. Elastic and inelastic phonon and spin scattering contributions are taken into account through a linear superposition of scattering cross sections. A mean field approximation is used to describe the ordered magnetic phase. Spin wave and impurity scattering, phonon and magnon drag are not included. In a range encompassing the Curie temperature, i.e. at “moderate temperatures”, the theory quantitatively reproduces observed features except for specific details (e.g. rounding near Tc) needing other physical input. We compare our theory to data on single crystals of Gd and Tb75Gd25. The c-axis thermoelectric power is well recovered for very reasonable values of anisotropy and scattering strength parameters. A conjecture is given to explain the basal plane thermoelectric power positive slope at high temperature.  相似文献   

11.
Normal state electrical and thermal properties, including electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ) of the CaAlxSi2−x (x=0.9-1.2) system were investigated. It is found that the electrical resistivity and Seebeck coefficient exhibit a typical metallic character throughout the temperature range investigated, and the metallicity of this series is enhanced with increase in Al/Si ratio. On the other hand, the thermal conductivity shows a weak temperature variation at low temperatures, whereas κ follows a T2-dependence for T>150 K. Analysis of the electronic thermal resistivity based on Klemen’s model reveals that the scattering of electrons from the defects and static imperfections becomes dominant as the temperature approaches Tc. These results are discussed in the light of simultaneous existence of various crystal structures and development of ultra-soft phonon mode recently observed in the CaAlSi system.  相似文献   

12.
Solid-state reaction processing technique was used to prepare ZnxNb1−xO (0≤x≤0.02) polycrystalline bulk samples. In the present study, we find that their lattice parameters a and c tend to decrease with increasing amount of Nb additive. The electrical conductivity of all the Zn1−xNbxO samples increased with increasing temperature, indicating a semiconducting behavior in the measured temperature range. The addition of Nb2O5 to ZnO led to an increase in the electrical conductivity and a decrease in the absolute value of the Seebeck coefficient. The best performance at 1000 K has been observed for nominal 0.5 at% Nb-doped ZnO, with an electrical resistivity of about 73.13 (S cm−1) and Seebeck coefficient of ∼257.36 μV K−1, corresponding to a power factor (S2σ) of 4.84×10−4 Wm−1 K−2. The thermal conductivity, κ, of the oxide decreased as compared to pure ZnO. The figure of merit ZT values of ZnO-doped Nb2O5 samples are higher than the ZnO pure sample, demonstrating that the Nb2O5 addition is fairly effective for enhancing thermoelectric properties.  相似文献   

13.
14.
The longitudinal conductivity of a quasi-one-dimensional metal is calculated for the case TDD being the limiting phonon frequency) and ωDl1/v?1 where l1 is the effective mean free path determined by impurity and phonon scattering: l1 = (l?1ph + l?1i)?1, lph = v/λT, li is the impurity mean free path. The conductivity is σ = (c1e2/πS)l3iv?2ωDλT for li?lph, σ = (c2e2/πS)D(λT)?2 for li?lph, λ being the dimensionless electron-phonon interaction constant, c1, c2 ~ 1, S = axay is the (xy) area per one chain.  相似文献   

15.
The thermal conductivity κ (within the range 4–300 K) and electrical conductivity σ (from 80 to 300 K) of polycrystalline Sm3S4 with the lattice parameter a=8.505 Å (with a slight off-stoichiometry toward Sm2S3) are measured. For T>95 K, charge transfer is shown to occur, as in stoichiometric Sm3S4 samples, by the hopping mechanism (σ ~ exp(?ΔE/kT) with ΔE ~ 0.13 eV). At low temperatures [up to the maximum in the lattice thermal conductivity κph(T)], κphT 2.6; in the range 20–50 K, κphT ?1.2; and for T>95 K, where the hopping charge-transfer mechanism sets in, κphT ?0.3 and a noticeable residual thermal resistivity is observed. It is concluded that in compounds with inhomogeneous intermediate rare-earthion valence, to which Sm3S4 belongs, electron hopping from Sm2+ (ion with a larger radius) to Sm3+ (ion with a smaller radius) and back generates local stresses in the crystal lattice which bring about a change in the thermal conductivity scaling of κph from T ?1.2 to T ?0.3 and the formation of an appreciable residual thermal resistivity.  相似文献   

16.
Samples with various nominal compositions in the Tb-Hg-Sr-Ca-Cu-O system were prepared and studied by EDX, powder X-ray diffraction including the Rietveld refinement, electrical resistivity, magnetic susceptibility and thermoelectric power measurements. EDX and powder X-ray diffraction studies showed that Tb is required for the stabilization of the 1212, (Hg1−yTby)Sr2TbCu2O6+δ; y≈0.5 phase. Electrical resistivity and magnetic susceptibility measurements indicated that substitution of Tb by Ca is necessary to induce superconductivity in the 1212, (Hg0.5Tb0.5)Sr2(Tb1−xCax)Cu2O6+δ samples. The Rietveld refinements of the X-ray data of two samples with x=0.0 and 0.5 were carried out on the basis of tetragonal symmetry (space group P4/mmm) and the results indicated that the phase with x=0.5 has less puckered Cu-O planes than the Ca-free (Hg0.5Tb0.5)Sr2TbCu2O6+δ phase. Syperconductivity is observed only for samples with x>0.2 and Tc increases with increasing Ca content, x. The results of thermoelectric power measurements suggest that the samples with x<0.8 are located in the underdoped region and the x=0.8 sample is optimally doped and exhibits the highest Tc of 88 K.  相似文献   

17.
Within the Theory of Finite Fermi Systems the gyromagnetic ratios g L ph of all low-lying phonons in 208Pb are calculated. The input data, i.e., single-particle energies, single-particle wavefunctions, and the ph interaction are derived from the Energy Density Functional by Fayans et al. For the 3 1 ? phonon which is the most collective state, the g L ph value is close to the prediction of the collective Bohr-Mottelson (BM) model. Gyromagnetic ratios of other phonons that are included in our calculations, two 5? states and six positive parity phonons, differ significantly from the BM model prediction.  相似文献   

18.
The optical phonons at k = 0 of ZnSiAs2 have been investigated by Raman scattering and infrared reflectivity measurements at 300 K. Eleven of thirteen expected optically active phonons have been observed and identified with respect to their symmetry types. The phonon frequencies appear in the range from 415 cm-1 to 75 cm-1 with predominant polar modes at 400 cm-1 (gG5), 389 cm-14) and 242 cm-14). The dielectric dispersion for Ec and E 6 c has been determined by Kramers-Kronig integrations.  相似文献   

19.
Samples of the opal + HgSe nanocomposite with 100% filling of the first-order opal pores by mercury selenide were prepared. The effective thermal conductivity κeff and electrical resistivity ρeff were measured in the temperature range T=5–200 K, and the thermopower coefficient α was measured in the interval 80–300 K. The coefficient α of HgSe in opal was shown to remain the same as that in bulk mercury selenide samples with similar carrier concentrations. The mechanism of carrier scattering in the HgSe loaded in opal also did not change. The total thermal conductivity κ tot 0 and electrical resistivity ρ0 were isolated from κeff and ρeff, and the electronic (κ e 0 ) and lattice (κ ph 0 ) components of thermal conductivity of HgSe in opal were determined. The magnitude of κ ph 0 was found to be considerably smaller than κph of bulk HgSe with the same carrier concentration throughout the temperature interval studied (5–200 K). For T>20 K, this behavior of κ ph 0 (T) is accounted for by the presence of specific impurities and defects forming in HgSe, and for T<20 K, by the onset of boundary scattering of phonons in the bottlenecks of the horn-shaped channels connecting first-order octahedral and tetrahedral opal pores loaded by mercury selenide.  相似文献   

20.
The electrical transport and thermal properties of the ferromagnetic shape memory alloy Ni49.4Mn30Ga20.6 are measured. Near around the starting point from austenite to martensite transition, the temperature (T) dependence of resistance for the sample shows a clear jump due to a great scattering mechanism introduced by the transformation resulting in many interfaces during the process. T-dependent curve of the thermoelectric power (S) of the sample shows linear dependence below martensitic transformation temperature with its absolute value decreasing during cooling. The absolute value of S   tends to reach at a maximum at the martensitic transformation which is reflected by ∂S/∂TS/T∼0. This may be related to the changes of the density of states near the phase transformation and the corresponding scattering introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号