首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A systematic series of (Ge15Ga10Te75)1−x(CsI)x (x=0, 5, 10, 15 at%) far infrared transmitting chalcohalide glasses were prepared by the traditional melt-quenching method. The physical, thermal and optical properties were determined. The allowed direct transition and indirect transition of samples were calculated according to the Tauc equation. The results show that glass transition temperatures (Tg) were in the range 133-175 °C, with ΔT values between 81 and 130 °C. The highest values of metallization criterion (0.244) and energy gap (1.191 eV) were obtained for (Ge15Ga10Te75)85(CsI)15. When the dissolved amount of CsI increased from 0 to 15 at%, the direct optical band gap and indirect optical band gap were in the ranges 0.629-1.075 eV and 0.438-0.524 eV, respectively. The Ge-Ga-Te-CsI glasses have an effective transmission window between 1.7 and 25 μm, encompassing the region of interest for bio-sensing applications.  相似文献   

2.
Transmission and reflection measurements in the wavelength region 450-1100 nm were carried out on Tl4In3GaS8-layered single crystals. The analysis of the room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 2.32 and 2.52 eV, respectively. The rate of change of the indirect band gap with temperature dEgi/dT=-6.0×10−4 eV/K was determined from transmission measurements in the temperature range of 10-300 K. The absolute zero value of the band gap energy was obtained as Egi(0)=2.44 eV. The dispersion of the refractive index is discussed in terms of the Wemple-DiDomenico single-effective-oscillator model. The refractive index dispersion parameters: oscillator energy, dispersion energy, oscillator strength and zero-frequency refractive index were found to be 4.87 eV, 26.77 eV, 8.48×1013 m−2 and 2.55, respectively.  相似文献   

3.
Nickel oxide thin films were successfully fabricated with various deposition time (td = 5, 10, and 15 min) on glass substrates using spray pyrolysis technique. The deposited films undergo thermal treatment at 350 °C for various annealing time (ta = 0, 15, 30 and 60 min). In this study, the effect of td and ta on film thickness was observed and their influence on structural, morphological and optical properties were investigated. The films deposited with td = 5 min showed amorphous structure while the films grown at higher deposition time became partially crystallized with preferred growth along (1 1 1) direction. Heat treatment carried out in air allowed us to tune the polycrystalline structure and the diffraction intensity at preferred peak increases with the increase in ta which is a consequence of better crystallinity. This was reflected in the AFM micrographs of the films which suggested that the thermal annealing (or increasing ta) facilitates the process of grain-growth, and improves the crystalline microstructure. The optical transmission of the films was found to vary with td and ta and thus film thickness. The thinner films show higher transparency in the UV–vis spectral region. The optical band gap was blue-shifted from 3.35 eV to 3.51 eV depending on ta. The effect of ta on the various optical constants of the NiO films has also been discussed.  相似文献   

4.
Polycrystalline zinc nitride films have been synthesized onto quartz substrates from the zinc nitride target and the nitrogen working gas by reactive rf magnetron sputtering at room temperature. X-ray diffraction study indicates that polycrystalline zinc nitride films are of cubic structure with the lattice constant a = 0.979(1) nm and have preferred orientations with (3 2 1) and (4 4 2). Its absorption coefficients as well as the film thickness are calculated from the transmission spectra, which are measured with a double beam spectrophotometer. The optical band gap has been determined from the photon energy dependence of absorption coefficient, an indirect transition optical band gap of 2.12(3) eV has been obtained.  相似文献   

5.
Optical properties such as the dynamic dielectric function, reflectance, and energy-loss function of beryllium oxide (BeO) in its ambient and high-pressure phases are reported for a wide energy range of 0-50 eV. The calculations of optical properties employ first-principles methods based on all-electron density functional theory together with sum over states and finite-field methods. Our results show subtle differences in the calculated optical properties of the wurtzite, zincblende, rocksalt and CsCl phases of BeO, which may be attributed to the higher symmetry and packing density of these phases. For the wurtzite phase, the calculated band gap of 10.4 eV corresponds well with the experimental value of 10.6 eV and the calculated (average) index of refraction of 1.70 shows excellent agreement with the experimental value of 1.72.  相似文献   

6.
Urea-succinic acid crystals have been grown at room temperature from aqueous solution in the presence of maleic acid by a slow evaporation technique. The structural parameters were determined using powder X-ray diffraction (XRD) and found to have monoclinic symmetry (space group P21/m) with a=9.902, b=17.510, c=5.555 Å and α=γ=90°, β=96.46°. The transparency and optical analysis were carried out using UV-vis analysis. The optical band gap is found to be 4.71 eV. The presence of various functional groups was confirmed by FTIR analysis. The samples have shown piezoelectric behavior with a fairly good piezoelectric charge coefficient (d33) of 5 pC/N, when it is poled at 7 kV/cm. The hysteresis loop was plotted and the remnant polarization and coercive field were found to be 2.8 μC/cm2 and 4 kV/cm, respectively. The dielectric analysis was carried out as a function of temperature at various frequencies and the results were also discussed.  相似文献   

7.
The influence of atomic hydrogen annealing on the optical parameters of a-Si:H films was studied using spectrophotometric measurements of the film transmittance and reflectance in the wavelength range 200-3000 nm. In this annealing, the deposition of a thin layer and treatment with atomic hydrogen were repeated alternately, where the thickness of the thin cyclic layer, dcyc, and the treatment time of each cycle, tca, were kept fixed for each sample. A series of different samples with average thickness of 0.5 μm and different dcyc and tca were prepared. It was found that the refractive index, n, and the optical energy gap, Eg, increase as the treatment time, tca, increases from 0 to 60 s, while at tca=120 s both n and Eg decrease. Also, both the refractive index and the optical energy gap decrease with increasing the relative diffusion length of hydrogen, √tca/dcyc from 0.39 to 0.77. The widening of Eg is due to the structural relaxation resulting from impingement of atomic hydrogen on the growing surface. Thus, a good-quality a-Si:H with Urbach parameter 65 mev and optical energy gap of 1.78 eV was successfully prepared.  相似文献   

8.
This paper presents, for the first time, the nanocrystalline, semiconducting antimony selenoiodide (SbSeI) grown in multi-walled carbon nanotubes (CNTs). It was prepared sonochemically using elemental Sb, Se, and I in the presence of ethanol under ultrasonic irradiation (35 kHz, 2.6 W/cm2) at 323 K for 3 h. The CNTs filled with SbSeI were characterized by using techniques such as powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, high-resolution transmission electron microscopy, selected area electron diffraction, and optical diffuse reflection spectroscopy. These investigations exhibit that the SbSeI filling the CNTs is single crystalline in nature and in the form of nanowires. It has indirect allowed energy band gap EgIf = 1.61(6) eV.  相似文献   

9.
Zinc indium selenide (ZnIn2Se4) thin films have been deposited onto amorphous and fluorine doped tin oxide (FTO)-coated glass substrates using a spray pyrolysis technique. Aqueous solution containing precursors of Zn, In, and Se has been used to obtain good quality deposits at different substrate temperatures. The preparative parameters such as substrate temperature and concentration of precursors solution have been optimized by photoelectrochemical technique and are found to be 325 °C and 0.025 M, respectively. The X-ray diffraction patterns show that the films are nanocrystalline with rhombohedral crystal structure having lattice parameter a=4.05 Å. The scanning electron microscopy (SEM) studies reveal the compact morphology with large number of single crystals on the surface. From optical absorption data the indirect band gap energy of ZnIn2Se4 thin film is found to be 1.41 eV.  相似文献   

10.
High-quality LaCuO2, elaborated by solid-state reaction in sealed tube, crystallizes in the delafossite structure. The thermal analysis under reducing atmosphere (H2/N2: 1/9) revealed a stoichiometric composition LaCuO2.00. The oxide is a direct band-gap semiconductor with a forbidden band of 2.77 eV. The magnetic susceptibility follows a Curie-Weiss law from which a Cu2+ concentration of 1% has been determined. The oxygen insertion in the layered crystal lattice induces p-type conductivity. The electrical conduction occurs predominantly by small polaron hopping between mixed valences Cu+/2+ with an activation energy of 0.28 eV and a hole mobility (μ300 K=3.5×10−7 cm2 V−1 s−1), thermally activated. Most holes are trapped in surface-polaron states upon gap excitation. The photoelectrochemical study, reported for the first time, confirms the p-type conduction. The flat band potential (Vfb=0.15 VSCE) and the hole density (NA=5.8×1017 cm−3) were determined, respectively, by extrapolating the curve C−2 versus the potential to their intersection with C−2=0 and from the slope of the linear part in the Mott-Schottky plot. The valence band is made up of Cu-3d orbital, positioned at 4.9 eV below vacuum. An energy band diagram has been established predicting the possibility of the oxide to be used as hydrogen photocathode.  相似文献   

11.
The effect of intrinsic defects and isoelectronic substitutional impurities on the electronic structure of boron-nitride (BN) nanotubes is investigated using a linearized augmented cylindrical wave method and the local density functional and muffin-tin approximations for the electron potential. In this method, the electronic spectrum of a system is governed by a free movement of electrons in the interatomic space between cylindrical barriers and by a scattering of electrons from the atomic centers. Nanotubes with extended defects of substitution NB of a boron atom by a nitrogen atom and, vice versa, nitrogen by boron BN with one defect per one, two, and three unit cells are considered. It is shown that the presence of such defects significantly affects the band structure of the BN nanotubes. A defect band π(B, N) is formed in the optical gap, which reduces the width of the gap. The presence of impurities also affects the valence band: the widths of s, sp, and pπ bands change and the gap between s and sp bands is partially filled. A partial substitution of the N by P atoms leads to a decrease in the energy gap, to a separation of the Ds(P) band from the high-energy region of the s(B, N) band, as well as to the formation of the impurity (P) and *(P) bands, which form the valence-band top and conduction-band bottom in the doped system. The influence of partial substitution of N atoms by the As atom on the electronic structure of BN nanotubes is qualitatively similar to the case of phosphorus, but the optical gap becomes smaller. The optical gap of the BN tubule is virtually closed due to the effect of one Sb atom impurity per translational unit cell, in contrast to the weak indium-induced perturbation of the band structure of the BN nanotube. Introduction of the one In, Ga or Al atom per three unit cells of the (5, 5) BN nanotube results in 0.6 eV increase of the optical gap. The above effects can be detected by optical and photoelectron spectroscopy methods, as well as by measuring electrical properties of the pure and doped BN nanotubes. They can be used to design electronic devices based on BN nanotubes.  相似文献   

12.
The optical absorption of the as-prepared and thermally annealed Se85−xTe15Sbx (0≤x≤9) thin films was measured. The mechanism of the optical absorption follows the rule of non-direct transition. The optical energy gap (E0) decreased from 1.12 to 0.84 eV with increasing Sb content of the as-prepared films from 0 to 9 at.%. The as-prepared Se76Te15Sb9 films showed an increase in (E0) with increasing the temperature of annealing in the range above Tg (363 K). The electrical conductivity of the as-prepared and annealed films was found to be of Arrhenius type with temperature in the range 300-360 K. The activation energy for conduction was found to decrease with increasing both the Sb content and temperature of annealing. The results were discussed on the basis of the lone-pair electron effect and of amorphous crystalline transformation.  相似文献   

13.
Electrical conductivity and fundamental absorption spectra of monocrystalline Cu7GeS5I were measured in the temperature ranges 95-370 and 77-373 K, respectively. A rather high electrical conductivity (σt=6.98×10−3Ω−1 cm−1 at 300 K) and low activation energy (ΔEa=0.183 eV) was found. The influence of different types of disordering on the Urbach absorption edge and electron-phonon interaction parameters were calculated, discussed and compared with the same parameters in Cu7GeS5I, Cu6PX5I (X=S,Se) and Ag7GeX5I (X=S,Se) compounds. We have concluded that the P→Ge and Cu→Ag cation substitution results in an increase of the electrical conductivity and a decrease of the activation energy. Besides, P→Ge substitution, results in complete smearing and disappearance of the exciton absorption bands and in blue shift of the Urbach absorption edge, an increase of the edge energy width and an electron-phonon-interaction enhancement.  相似文献   

14.
The crystal structure, band gap energy and bowing parameter of In-rich InxAl1−xN (0.7 < x < 1.0) films grown by magnetron sputtering were investigated. Band gap energies of InxAl1−xN films were obtained from absorption spectra. Band gap tailing due to compositional fluctuation in the films was observed. The band gap of the as-grown InN measured by optical absorption method is 1.34 eV, which is larger than the reported 0.7 eV for pure InN prepared by molecular beam epitaxy (MBE) method. This could be explained by the Burstein-Moss effect under carrier concentration of 1020 cm−3 of our sputtered films. The bowing parameter of 3.68 eV is obtained for our InxAl1−xN film which is consistent with the previous experimental reports and theoretical calculations.  相似文献   

15.
Microstructure, magnetic and optical properties of polycrystalline Fe-doped ZnO films fabricated by cosputtering with different Fe atomic fractions (xFe) have been examined systematically. Fe addition could affect the growth of ZnO grains and surface morphology of the films. As xFe is larger than 7.0%, ZnFe2O4 grains appear in the films. All the films are ferromagnetic. The ferromagnetism comes from the ferromagnetic interaction activated by defects between the Fe ions that replace Zn ions. The average moment per Fe ion reaches a maximum value of 1.61 μB at xFe = 4.8%. With further increase in xFe, the average moment per Fe ion decreases because the antiferromagnetic energy is lower than the ferromagnetic one due to the reduced distance between the adjacent Fe ions. The optical band gap value decreases from 3.245 to 3.010 eV as xFe increases from 0% to 10%. Photoluminescence spectra analyses indicate that many defects that affect the optical and magnetic properties exist in the films.  相似文献   

16.
The optical absorption of the As-prepared and annealed As45.2Te46.6In8.2 thin films are studied. Films annealed at temperatures higher than 453 K show a decrease in the optical energy gap (Eo). The value of Eo increases from 1.9 to 2.43 eV with increasing thickness of the As-prepared films from 60 to 140 nm. The effect of thickness on high frequency dielectric constant (?) and carrier concentration (N) is also studied. The crystalline structures of the As45.2Te46.6In8.2 thin films resulting from heat treatment of the As-prepared film at different elevated temperatures is studied by X-ray diffraction. An amorphous-crystalline transformation is observed after annealing at temperatures higher than 453 K. The electrical conductivity at low temperatures is found due to the electrons transport by hopping among the localized states near the Fermi level. With annealing the films at temperatures higher than 473 K (the crystallization onset temperature) for 1 h, the electrical conductivity increases and the activation energy decreases, which can be attributed to the amorphous-crystalline transformations.  相似文献   

17.
The optical properties of polycrystalline lead iodide thin film grown on Corning glass substrate have been investigated by spectroscopic ellipsometry. A structural model is proposed to account for the optical constants of the film and its thickness. The optical properties of the PbI2 layer were modeled using a modified Cauchy dispersion formula. The optical band gap Eg has been calculated based on the absorption coefficient (α) data above the band edge and from the incident photon energy at the maximum index of refraction. The band gap was also measured directly from the plot of the first derivative of the experimental transmission data with respect to the light wavelength around the transition band edge. The band gap was found to be in the range of 2.385±0.010 eV which agrees with the reported experimental values. Urbach's energy tail was observed in the absorption trend below the band edge and was found to be related to Urbach's energy of 0.08 eV.  相似文献   

18.
A series of Cr-doped ZnO micro-rod arrays were fabricated by a spray pyrolysis method. X-ray diffraction patterns of the samples showed that the undoped and Cr-doped ZnO microrods exhibit hexagonal crystal structure. Surface morphology analysis of the samples has revealed that pure ZnO sample has a hexagonal microrod morphology. From X-ray photoelectron spectroscopy studies, the Cr 2p3/2 binding energy is found to be 577.3 eV indicating that the electron binding energy of the Cr in ZnO is almost the same as the binding energy of Cr3+ states in Cr2O3. The optical band gap Eg decreases slightly from 3.26 to 3.15 eV with the increase of actual Cr molar fraction from x = 0.00 to 0.046 in ZnO. Photoluminescence studies at 10 K show that the incorporation of chromium leads to a relative increase of deep level band intensity. It was also observed that Cr doped samples clearly showed ferromagnetic behavior; however, 2.5 at.% Cr doped ZnO showed remnant magnetization higher than that of 1.1 at.% and 4.6 at.% Cr doped samples, while 4.6 at.% Cr doped ZnO samples had a coercive field higher than the other dopings.  相似文献   

19.
Novel highly c-oriented tungsten-doped zinc oxide (WZO) thin films with 1 wt% were grown by pulsed laser deposition (PLD) technique on corning 1737F glass substrate. The effects of laser energy on the structural, morphological as well as optical transmission properties of the films were studied. The films were highly transparent with average transmittance exceeding 87% in the wavelength region lying between 400 and 2500 nm. X-ray diffraction analysis (XRD) results indicated that the WZO films had c-axis preferred orientation with wurtzite structure. Film thickness and the full width at half maximum (FWHM) of the (0 0 2) peaks of the films were found to be dependent on laser fluence. The composition determined through Rutherford backscattering spectroscopy (RBS) appeared to be independent of the laser fluence. By assuming a direct band gap transition, the band gap values of 3.36, 3.34 and 3.31 eV were obtained for corresponding laser fluence of 1, 1.7 and 2.7 J cm−2, respectively. Compared with the reported undoped ZnO band gap value of 3.37 eV, it is conjectured that the observed low band gap values obtained in this study may be attributable to tungsten incorporation in the films as well as the increase in laser fluence. The high transparency makes the films useful as optical windows while the high band gap values support the idea that the films could be good candidates for optoelectronic applications.  相似文献   

20.
The nanocomposites of conducting polyaniline and layered vanadyl phosphate, VOPO4·2H2O are synthesized by redox intercalation method. Water content decreases with insertion of polyaniline molecules. In scanning electron micrographs plate like structures are observed for both VOPO4·2H2O and intercalated nanocomposites. Protonation of polyaniline and interaction with vanadyl phosphate are observed in infrared and UV absorption spectroscopy. Intercalation improves conductivity of pristine vanadyl phosphate. Thermally activated electrical dc conductivity at low temperature shows two distinct slopes around 210 K for both the nanocomposites. The optical band gap of vanadyl phosphate decreases from 4.0 to 3.7 eV due to insertion of polyaniline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号