首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have investigated the electro-optical properties of zigzag BNNTs, under an external electric field, using the tight binding approximation. It is found that an electric field modifies the band structure and splits the band degeneracy. Also the large electric strength leads to coupling the neighbor subbands which these effects reflect in the DOS and JDOS spectrum. It has been shown that, unlike CNTs, the band gap of BNNTs can be reduced linearly by applying a transverse external electric field. Also we show that the larger diameter tubes are more sensitive than small ones. The semiconducting metallic transition can be achieved through increasing the applied fields. The number and position of peaks in the JDOS spectrum are dependent on electric field strength. It is found that at a high electric field, the two lowest subbands are oscillatory with multiple nodes at the Fermi level.  相似文献   

2.
We explore the pattern of size dependence of linear and non-linear optical (NLO) responses of one-electron quantum dots in two dimensions with or without anharmonicity in the confinement potential. For some fixed values of transverse magnetic field strength (ωc) and harmonic confinement potential (ω0), the influence of the size of the dot on the linear (), the first (β) and the second (γ) NLO responses of the system computed through a finite field linear variational route is analysed. Size-dependent maximization is predicted to be feasible for the quadratic hyperpolarizability.  相似文献   

3.
First-principal density functional theory (DFT) calculations of the band structure, density of states and dielectric functions ε(E) of the rubidium ammonium sulfate (RAS) crystal, RbNH4SO4, in the orthorhombic phase Pnma have been carried out using the CASTEP code. Valence electron bands of the crystal are flat in k-space, that responds to the relatively great effective mass, m*?5me. The top valence band of the crystal has been found to be the most flat, what might be an evidence of a weak chemical bonding of the sulfate complexes (SO4) in the crystal and therefore for the predisposition to structural instability and phase transitions. The characteristic feature is that two top valence bands are originated almost entirely from p-electrons of oxygen. The bottom part of the conduction band is formed mainly by the hydrogen atoms, the higher parts of this band—by a mixed set of chemical elements and orbital moments. The calculated refractive indices in the range of crystal's transparency agree satisfactorily with the experiment considering that the infrared absorption is not taken into account in calculations.  相似文献   

4.
Ten layers of self-assembled InMnAs quantum dots with InGaAs barrier were grown on high resistivity (1 0 0) p-type GaAs substrates by molecular beam epitaxy (MBE). The presence of ferromagnetic structure was confirmed in the InMnAs diluted magnetic quantum dots. The ten layers of self-assembled InMnAs quantum dots were found to be semiconducting, and have ferromagnetic ordering with a Curie temperature, TC=80 K. It is likely that the ferromagnetic exchange coupling of sample with TC=80 K is hole mediated resulting in Mn substituting In and is due to the bound magnetic polarons co-existing in the system. PL emission spectra of InMnAs samples grown at temperature of 275, 260 and 240 °C show that the interband transition peak centered at 1.31 eV coming from the InMnAs quantum dot blueshifts because of the strong confinement effects with increasing growth temperature.  相似文献   

5.
Poly(ethylene oxide)/teraamino-phthalocyanine copper (II) (PEO/(NH2)4PcCu) hybrid nanofibers with a diameter of 200-300 nm were prepared by electrospinning technique. The hybrid nanofibers membrane was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), ultraviolet-visible (UV-vis), and photoluminescence (PL), respectively. The results indicated that (NH2)4PcCu molecule was successfully embedded in the one-dimensional hybrid nanofibers via chemical interaction between PEO and (NH2)4PcCu. The PL results showed that the PEO/(NH2)4PcCu hybrid nanofibers had an intense emission at about 450 nm. A possible PL mechanism was proposed accordingly.  相似文献   

6.
CdP2 nanoclusters were fabricated by incorporation into pores of zeolite Na–X and by laser ablation. Absorption and photoluminescence (PL) spectra of CdP2 nanoclusters in zeolite were measured at the temperatures of 4.2, 77 and 293 K. Both absorption and PL spectra consist of two bands blue shifted with respect to bulk crystal. We performed the calculations aimed to find the most stable clusters in the size region up to size of the zeolite Na–X supercage. The most stable clusters are (CdP2)6 and (CdP2)8 with binding energies of 9.30 and 10.10 eV per (CdP2)1 formula unit, respectively. Therefore, we attributed two bands observed in absorption and PL spectra to these stable clusters. The Raman spectrum of CdP2 clusters in zeolite was explained to be originated from (CdP2)6 and (CdP2)8 clusters as well. The PL spectrum of CdP2 clusters produced by laser ablation consists of the asymmetric band with low-energy tail that has been attributed to emission of both (CdP2)8 cluster and CdP2 microcrystals.  相似文献   

7.
Good quality and bulk size single crystal (size: 20×13×8 mm3) of bis(glycine) lithium nitrate (BGLiN) was grown by a slow evaporation solution technique from the aqueous solutions at constant temperature i.e. 27 °C using synthesized materials. Crystal system and lattice parameters were determined by single crystals as well as powder X-ray diffraction analysis. The lattice parameters of the titled compound are a=10.0223 Å, b=5.0343 Å, c=17.0510 Å, and V=860.312 Å3 and it crystallized in an orthorhombic system with space group Pca21 obtained by single crystal XRD. Elemental composition was confirmed by energy dispersive X-ray spectroscopic analysis. Optical absorption spectrum was recorded and various optical parameters such as optical transmission (~60%), and optical band gap (4.998 eV) were calculated. Photoluminescence study shows that the grown crystal is free from major defects. Crystalline perfection of the grown crystal was assessed and found good. Ground state optimized geometry has been obtained by using DFT with 6-31G(d,p) basis set. HOMO and LUMO energy gap was found to be 6.01 eV and dipole moment was 1.65 D.  相似文献   

8.
Optical properties such as the dynamic dielectric function, reflectance, and energy-loss function of beryllium oxide (BeO) in its ambient and high-pressure phases are reported for a wide energy range of 0-50 eV. The calculations of optical properties employ first-principles methods based on all-electron density functional theory together with sum over states and finite-field methods. Our results show subtle differences in the calculated optical properties of the wurtzite, zincblende, rocksalt and CsCl phases of BeO, which may be attributed to the higher symmetry and packing density of these phases. For the wurtzite phase, the calculated band gap of 10.4 eV corresponds well with the experimental value of 10.6 eV and the calculated (average) index of refraction of 1.70 shows excellent agreement with the experimental value of 1.72.  相似文献   

9.
Detailed ab initio calculations of the structural, electronic, optical and elastic properties of CsCaBr3, CsGeBr3 and CsSnBr3 crystals are presented in this paper. Based on the obtained results, CsCaBr3 is characterized as a dielectric with an indirect band gap, whereas CsGeBr3 and CsSnBr3 are semiconductors with very narrow direct band gaps. The first theoretical estimations of the refractive indexes for all compounds are reported. Variations of the electron density difference distribution induced by changes of the second cation were analyzed and related to the type of chemical bonding between atoms. In addition, the complete set of elastic parameters (which includes the elastic constants, elastic compliance constants, bulk and Young’s moduli, elastic anisotropy) was obtained. Directional anisotropy of elastic properties was visualized; the directions in the crystal lattices, along which the maximal and minimal values of the Young’s moduli are realized, were identified.  相似文献   

10.
We present structural, elastic, electronic and optical properties of the perovskites SrMO3 (M=Ti, and Sn) for different pressure. The computational method is based on the pseudo-potential plane wave method (PP-PW). The exchange-correlation energy is described in the generalized gradient approximation (GGA). The calculated equilibrium lattice parameters are in reasonable agreement with the available experimental data. This work shows that the perovskites SrTiO3, and SrSnO3 are mechanically stable and present an indirect band gaps at the Fermi level. Applied pressure does not change the shape of the total valence electronic charge density and most of the electronic charge density is shifted toward O atom. Furthermore, in order to understand the optical properties of SrMO3, the dielectric function, absorption coefficient, optical reflectivity, refractive index, extinction coefficient and electron energy-loss are calculated for radiation up to 80 eV. The enhancement of pressure decreases the dielectric function and refractive indices of SrTiO3 and SrSnO3.  相似文献   

11.
The electronic and adsorption properties of the pristine, Al-, Ga-, and Ge-doped BN nanotubes interacted with 5-fluorouracil molecule (5-FU) were theoretically investigated in the gas phase using the B3LYP density functional theory (DFT) calculations. It was found that the adsorption behavior of 5FU molecule on the pristine (8, 0) and (5, 5) BNNTs are electrostatic in nature. In contrast, the 5FU molecule (O-side) implies strong adsorption on the metal-doped BNNTs. Our results indicate that the Ga-doped presents high sensitivity and strong adsorption with the 5-FU molecule than the Al- and Ge-doped BNNTs. Therefore, it can be introduced as a carrier for drug delivery applications.  相似文献   

12.
We report on density functional theory (DFT) calculations of the total and partial densities of states of rubidium dilead pentabromide, RbPb2Br5, employing the augmented plane wave+local orbitals (APW+lo) method as incorporated in the WIEN2k package. The calculations indicate that the Pb 6s and Br 4p states are the dominant contributors to the valence band: their main contributions are found to occur at the bottom and at the top of the band, respectively. Our calculations reveal that the bottom of the conduction band is formed predominantly from contributions of the unoccupied Pb 6p states. Data of total DOS derived in the present DFT calculations are found to be in agreement with the experimental X-ray photoelectron valence-band spectrum of this compound. The predominant contributions of the Br 4p states at the top of the valence band of rubidium dilead pentabromide are confirmed by comparison on a common energy scale of the X-ray emission band representing the energy distribution of the valence Br p states and the X-ray photoelectron valence-band spectrum of the RbPb2Br5 single crystal. Main optical characteristics of RbPb2Br5, such as dispersion of the absorption coefficient, real and imaginary parts of dielectric function, electron energy-loss spectrum, refractive index, extinction coefficient and optical reflectivity are explored for RbPb2Br5 by the DFT calculations.  相似文献   

13.
Bismuth sulfide (Bi2S3) and antimony sulfide (Sb2S3) nanorods were synthesized by hydrothermal method. The products were characterized by UV-vis spectrophotometer, X-ray powder diffraction (XRD) and transmission electron microscope (TEM). Bi2S3 and Sb2S3 nanorods were measured by Z-scan technique to investigate the third-order nonlinear optical (NLO) properties. The result of NLO measurements shows that the Bi2S3 and Sb2S3 nanorods have the behaviors of the third-order NLO properties of both NLO absorption and NLO refraction with self-focusing effects. The third-order NLO coefficient χ(3) of the Bi2S3 and Sb2S3 nanorods are 6.25×10−11 esu and 4.55×10−11 esu, respectively. The Sb2S3 and Bi2S3 nanorods with large third-order NLO coefficient are promising materials for applications in optical devices.  相似文献   

14.
The adsorption of OCN (cyanato anion) on boron nitride (B12N12 and B16N16) and boron phosphide nano-cages (B12P12 and B16P16) in terms of energetic, geometric, and electronic properties are studied using density functional theory calculations. Our study results indicated that the first OCN strongly prefers to be adsorbed from its N atom upon B atoms of the nano-cages than the O atoms of OCN. These findings have been rationalized using frontier molecular orbitals and total electron density plots. The energy gap of the B12P12 is significantly reduced upon the adsorption of OCN compared to B12N12, thus leading to the increase in electrical conductance of nano-cage.  相似文献   

15.
Semiconducting molecular materials based on aluminum phthalocyanine chloride (AlPcCl) and bidentate amines have been successfully used to prepare thin films by using a thermal evaporation technique. The morphology of the deposited films was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Studies of the optical properties were carried out on films deposited onto quartz and (1 0 0) monocrystalline silicon wafers and films annealed after deposition. The absorption spectra recorded in the UV–vis region for the as-deposited and annealed samples showed two absorption bands, namely the Q- and B-bands. In addition, an energy doublet in the absorption spectra of the monoclinic form at 1.81 and 1.99 eV was observed. A band-model theory was employed in order to determine the optical parameters. The fundamental energy gap (direct transitions) was determined to be within the 2.47–2.59 and 2.24–2.44 eV ranges, respectively, for the as-deposited and annealed thin films.  相似文献   

16.
The dielectric responses (i.e. the refractive indices and the second order nonlinear susceptibilities) of all orthorhombic rare earth molybdates have been studied on the basis of the relationship between dielectric responses and the average atomic number of constituent atoms of crystals. Both the linear and second order nonlinear optical responses at 1.064 μm decrease with increasing atomic number from La to Lu.  相似文献   

17.
The variation of DC electrical conductivity and the optical properties of thermally evaporated a- (Sb2Se3)100−xSnx thin films with temperature have been studied. It is found that the thermal activation energy decreases, while the optical gap first increases (up to x=1) and then decreases, with the increase in Sn content. These results have been explained by taking into consideration the structural modifications induced by the incorporation of Sn into the parent alloy. The variation in the conductivity prefactor (σo) with Sn addition indicates a change in the dominant conduction transport mechanism from extended states to localized states. An experimental correlation between the activation energy and the pre-exponential factor has been observed, indicating the validity of Meyer–Neldel rule in the studied samples.  相似文献   

18.
In this paper we reported a NH3·H2O-assisted solvothermal route for successful synthesis of cadmium hydroxyl chlorides (Cdx(OH)yClz) microstructures with different phases and shapes, employing 1D CdQCl (Q=quinoline) complex microwires as the precursor. Experiments contained two processes: firstly, CdQCl complex microwires with 500–600 nm in diameter and several hundreds of micrometers in length were prepared by the complexation between CdCl2·2.5H2O and quinoline at room temperature; then, CdQCl microwires were solvothermally treated at 150 °C for 10 h in the presences of different amounts of NH3·H2O to produce Cdx(OH)yClz microstructures with various phases and shapes. The as-obtained precursor and Cdx(OH)yClz microstructures were characterized by scanning electron microscopy, transmission electron microscopy, Infrared spectrometry and X-ray powder diffraction. Experiments showed that hexagonal Cd(OH)Cl was obtained from water–methanol system, while rhombohedral Cd4(OH)5Cl3 from methanol system. Also, it was found that the shapes of Cdx(OH)yClz could be tuned by the amounts of NH3·H2O. Furthermore, the UV diffuse reflection and photoluminescence spectra of the precursor and Cdx(OH)yClz were also investigated.  相似文献   

19.
In this work, we have reported the synthesis of dahlia flower-like ZnO nanostructures consisting of human finger-like nanorods by the hydrothermal method at 120 °C and without using any capping agent. Optical properties of the samples, including UV–vis absorption and photoluminescence (PL) emission characteristics are determined by dispersing the samples in water as well as in ethanol media. The quenching of PL emission intensity along-with the red shifting of the PL emission peak are observed when the samples are dispersed in water in comparison to those obtained after dispersing the samples in ethanol. It has been found that PL emission characteristic, particularly the spectral nature of PL emission, of the samples remains almost unaltered (except some improvement in UV PL emission) even after thermally annealing it for 2 h at the temperature of 300 °C. Also the synthesized powder samples, kept in a plastic container, showed a very stable PL emission even after 15 months of synthesis. Therefore, the synthesized samples might be useful for their applications in future optoelectronics devices.  相似文献   

20.
The nanocomposites of conducting polyaniline and layered vanadyl phosphate, VOPO4·2H2O are synthesized by redox intercalation method. Water content decreases with insertion of polyaniline molecules. In scanning electron micrographs plate like structures are observed for both VOPO4·2H2O and intercalated nanocomposites. Protonation of polyaniline and interaction with vanadyl phosphate are observed in infrared and UV absorption spectroscopy. Intercalation improves conductivity of pristine vanadyl phosphate. Thermally activated electrical dc conductivity at low temperature shows two distinct slopes around 210 K for both the nanocomposites. The optical band gap of vanadyl phosphate decreases from 4.0 to 3.7 eV due to insertion of polyaniline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号