首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Three activated carbons (ACs) for the electrodes of supercapacitor were prepared from cationic starch using KOH, ZnCl2 and ZnCl2/CO2 activation. The BET surface area, pore volume and pore size distribution of the ACs were evaluated using density functional theory method, based on N2 adsorption isotherms at 77 K. The surface morphology was characterized with SEM. Their electrochemical performance in prototype capacitors was determined by galvanostatic charge/discharge characteristics and cyclic voltammetry, and compared with that of a commercial AC, which was especially prepared for use in supercapacitors. The KOH-activated starch AC presented higher BET surface area (3332 m2 g−1) and larger pore volume (1.585 cm3 g−1) than those of the others, and had a different surface morphology. When used for the electrodes of supercapacitors, it exhibited excellent capacitance characteristics in 30 wt% KOH aqueous electrolytes and showed a high specific capacitance of 238 F g−1 at 370 mA g−1, which was nearly twice that of the commercial AC.  相似文献   

2.
An isotropic pitch and an anisotropic pitch with similar softening point were chosen to be precursors for activated carbons (ISO and ANISO, respectively). Chemical activations with same conditions were carried out and the effects of microstructure of precursors on characteristics of activated carbons were discussed. Isotropic pitch with more noncrystallite carbon atoms or edge carbon atoms on the microstructural defects had more reactive ability and more pores were manufactured through sufficient chemical activation. Electric double-layer capacitors (EDLC) were made with the two activated carbons as electrode materials and 1 M Et4NBF4/PC as the electrolyte. The performance of EDLC with the ISO has higher specific capacitance (43.5 F g−1) than the ANISO (21.3 F g−1) and has better power performance and lower resistance than the latter.  相似文献   

3.
Potato starch-based activated carbon spheres (PACS) were prepared from potato starch by stabilization, carbonization followed by activation with KOH. The obtained PACS are hollow and retain the original morphology of potato starch with decrease in size, as shown by scanning electron microscopy. Modification of textural properties of the PACS was achieved by varying the carbonization temperature and the ratio of KOH/PCS. The results of N2 adsorption isotherms indicate that the samples prepared are mainly microporous. The electrochemical behaviors of the hollow PACS were studied by galvanostatic charge-discharge, cyclic voltammetry, and impedance spectroscopy. The results indicate that high specific capacitance of 335 F/g is obtained at current density 50 mA/g for PACS with specific surface area 2342 m2/g. Only a slight decrease in capacitance, to 314 F/g, was observed when the current density increases to 1000 mA/g, indicating a stable electrochemical property.  相似文献   

4.
Vanadium nitride (VN) powder was synthesized by calcining V2O5 xerogel in a furnace under an anhydrous NH3 atmosphere at 400 °C. The structure and surface morphology of the obtained VN powder were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The supercapacitive behavior of VN in 1 M KOH electrolyte was studied by means of cyclic voltammetry (CV), constant current charge-discharge cycling (CD) and electrochemical impedance spectroscopy (EIS). The XRD result indicates that the obtained VN belongs to the cubic crystal system (Fm3m [2 2 5]) with unit-cell parameter 4.15 Å. SEM images show the homogeneous surface of the obtained VN. The CV diagrams illustrate the existence of fast and reversible redox reactions on the surface of VN electrode. The specific capacitance of VN is 161 F g−1 at 30 mV s−1. Furthermore, the specific capacitance remains 70% of the original value when the scan rate increases from 30 to 300 mV s−1. CD experiments show that VN is suitable for CD at high current density, and the slow and irreversible faradic reactions exist during the charge-discharge process of the VN electrode. The experimental results indicate that VN is a promising electrode material for electrochemical supercapacitors.  相似文献   

5.
In the work, short multi-walled carbon nanotubes (S-CNTs) were synthesized by chopping conventional μm-long multi-walled carbon nanotubes (L-CNTs) under ultrasonication in H2SO4/HNO3 mixed acids. A comparative electrochemical investigation performed in 6 M KOH solution demonstrated that a specific capacitance (SC) of ca. 14.6 μF cm−2 was delivered by the S-CNTs with the specific surface area (SSA) of 207 m2 g−1, much larger than that of ca. 10.1 μF cm−2 for the L-CNTs with the SSA of 223 m2 g−1, the reason for which was that S-CNTs with two open ends, due to good ion penetrability, provided more entrances for electrolyte ions to access the inner surface easily through their shorter inner pathway so as to enhance their SSA utilization and geometric SC. The surface structure disruption of S-CNTs, owing to ultrasonication and oxidation during chopping process, deteriorated their electronic conductivity and resulted in an inferior power property in contrast to L-CNTs.  相似文献   

6.
In this study, pomegranate seeds, a by-product of fruit juice industry, were used as precursor for the preparation of activated carbon by chemical activation with ZnCl2. The influence of process variables such as the carbonization temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons was studied. When using the 2.0 impregnation ratio at the carbonization temperature of 600 °C, the specific surface area of the resultant carbon is as high as 978.8 m2 g−1. The results showed that the surface area and total pore volume of the activated carbons at the lowest impregnation ratio and the carbonization temperature were achieved as high as 709.4 m2 g−1 and 0.329 cm3 g−1. The surface area was strongly influenced by the impregnation ratio of activation reagent and the subsequent carbonization temperature.  相似文献   

7.
In this work, hierarchically porous TiO2–B nanoflowers have been successfully synthesized via a facile solvothermal method followed by calcination treatment. The TiO2–B nanoflowers are constructed by thin nanosheets, presenting ultrahigh specific surface area, up to 214.6 m2 g−1. As anode materials for Li-ion batteries, the TiO2–B sample shows high reversible capacity, excellent cycling performance and superior rate capability. The specific capacity of TiO2–B could remain over 285 mA h g−1 at 1 C and 181 mA h g−1 at 10 C rate after 100 cycles. We believe that the pseudocapacitive mechanism, ultrahigh surface area and scrupulous nanoarchitecture of the TiO2–B are responsible for the enhancement of electrochemical properties.  相似文献   

8.
Amorphous and porous ruthenium oxide thin films have been deposited from aqueous Ru(III)Cl3 solution on stainless steel substrates using electrodeposition method. Cyclic voltammetry study of a film showed a maximum specific capacitance of 650 F g−1 in 0.5 M H2SO4 electrolyte. The surface treatments such as air annealing, anodization and ultrasonic weltering affected surface morphology. The supercapacitance of ruthenium oxide electrode is found to be dependent on the surface morphology.  相似文献   

9.
Predominant few-layer graphene (FLG) sheets of high electrical conductivity have been synthesized by a multi-step intercalation and reduction method. The electrical conductivity of the as-synthesized FLG is measured to be ∼3.2 × 104 S m−1, comparable to that of pristine graphite. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman analysis reveal that the as-synthesized FLG sheets have large areas with single and double layers. The specific capacitance of 180 F g−1 is obtained for the FLG in a 1 M Na2SO4 aqueous electrolyte by integrating the cyclic voltammogram. The good capacitive behavior of the FLG is very promising for the application for next-generation high-performance electrochemical supercapacitors.  相似文献   

10.
Highly ordered mesoporous Co3O4, NiO, and their metals were synthesized by nanocasting method using there corresponding mesoporous SBA-15 silica as a template. The obtained porous metal oxides have high surface areas, large pore volume, and a narrow pore size distribution. The N2-adsorption data for mesoporous metal oxides have provided the BET area of 257.7 m2 g−1 and the total pore volume of 0.46 cm3 g−1. The mesoporous metals were employed as a catalyst in the synthesis of (S)-3-pyrrolidinol from chiral (S)-4-chloro-3-hydroxybutyronitrile, and a high yield to (S)-3-pyrrolidinol-salt was obtained on the mesoporous Co metal catalyst.  相似文献   

11.
Thorn-like, organometallic-functionalized carbon nanotubes were successfully developed via a novel microwave hydrothermal route. The organometallic complex with methyl orange and iron (III) chloride served as reactive seed template, resulting in the oriented polymerization of pyrrole on the modified carbon nanotubes without the assistance of other oxidants. Morphological and structural characterizations of the carbon nanotube/methyl orange-iron (III) chloride and polypyrrole/carbon nanotube composites were examined using transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), infrared spectroscopy and X-ray diffraction (XRD). The electrochemical property of the polypyrrole/carbon nanotube composite was elucidated by cyclic voltammetry and galvanostatic charge-discharge. A specific capacitance of 304 F g−1 was obtained within the potential range of −0.5-0.5 V in 1 M KCl solution.  相似文献   

12.
The capacitive properties of graphene nanoribbons (GNRs) with different reduction levels were investigated. GNRs have been synthesized through thermal reduction of oxidized GNRs in the temperature range 100–400 °C. Oxidized GNRs were synthesized by longitudinal unzipping of multi-walled carbon nanotubes (MWCNTs) by means of chemical treatments. Scanning electron microscopy and transmission electron microscopy observations showed, that the efficient tube unzipping yielded improved effective surface area without any tube annihilation by the unzipping process of MWCNTs. Electrochemical studies indicated that through unzipping of MWCNTs, specific capacitance increased from 8 to 28 F g−1 at discharge current density of 0.5 A g−1, confirming increased active surface area and increased defect density in the MWCNTs surface. Unzipping of MWCNTs resulted in decreased rate capability of the electrode because of low electrical conductivity due to oxidization during the unzipping process. Thermal reduction of unzipped sample affected both specific capacitance and rate capability of electrodes. The highest specific capacitance of 62 F g−1 at discharge current density of 0.5 A g−1 was obtained for the sample unzipped and thermally annealed at about 150 °C. The amount of oxygen-containing groups was shown to be an important factor influencing the performance of the GNRs. These results make unzipped MWCNTs promising electrode materials for supercapacitor applications.  相似文献   

13.
Nitrogen-doped porous activated carbons (N-PHACs) have been successfully synthesized using pomegranate husk as carbon precursor via ZnCl2-activation carbonization and subsequent urea-assisted hydrothermal nitrogen-doping method. The obtained N-PHACs possesses abundant mesoporous structure, high specific surface area (up to 1754.8 m2 g?1), pore volume (1.05 cm3 g?1), and nitrogen-doping content (4.51 wt%). Besides, the N-PHACs-based material showed a high specific capacitance of 254 F g?1 at a current density of 0.5 A g?1 and excellent rate performance (73% capacitance retention ratio even at 20 A g?1) in 2 M KOH aqueous electrolyte, which is attributed to the contribution of double-layer capacitance and pseudocapacitance. The assembled N-PHACs-based symmetric capacitor with a wide operating voltage range of 0–1.8 V exhibits a maximum energy density of 15.3 Wh kg?1 at a power density of 225 W kg?1 and superior cycle stability (only 6% loss after 5000 cycles) in 0.5 M Na2SO4 aqueous electrolyte. These exciting results suggest that the novel N-doping porous carbon material prepared by a green and low-cost design strategy has a potential application as high-performance electrode materials for supercapacitors.  相似文献   

14.
Using cherry stones, the preparation of activated carbon has been undertaken in the present study by chemical activation with potassium hydroxide. A series of KOH-activated products was prepared by varying the carbonisation temperature in the 400-900 °C range. Such products were characterised texturally by gas adsorption (N2, −196 °C), mercury porosimetry, and helium and mercury density measurements. FT-IR spectroscopy was also applied. The carbons prepared as a rule are microporous and macroporous solids. The degree of development of surface area and porosity increases with increasing carbonisation temperature. For the carbon heated at 900 °C the specific surface area (BET) is 1624 m2 g−1, the micropore volume is 0.67 cm3 g−1, the mesopore volume is 0.28 cm3 g−1, and the macropore volume is 1.84 cm3 g−1.  相似文献   

15.
The experimental results on the synthesis of tetraethoxysilane (TEOS)-based silica aerogel with high specific surface area and large pore volume, via ambient pressure drying (APD) route, are reported. The silica aerogels were prepared by the acid-base sol-gel polymerization of TEOS precursor followed by the drying of the alcogels at an ambient pressure. The solvent present in the alcogel (i.e. ethanol) was replaced by a non-polar solvent such as hexane prior to the surface modification step. In order to minimize the drying shrinkage, the surface of the gels was modified using trimethylchlorosilane (TMCS) before the APD. The FTIR spectra of the surface modified aerogels showed Si-CH3 peaks at 2965 and 850 cm−1. The effect of the base catalyst (NH4OH) addition to the sol, at different time intervals (T), on the physical and textural properties of the resulting aerogels has been investigated. It has been observed that the surface area and the cumulative pore volume of the aerogels enhanced considerably from 819 to 1108 m2 g−1 and 2.65 to 4.7 cm3 g−1, respectively with an increase in the T value from 6 to 48 h. Silica aerogels with very low bulk density (0.06 g cm−3), extremely high specific surface area (1108 m2 g−1) and large cumulative pore volume (4.7 cm3 g−1) could be synthesized by drying the alcogels at the ambient pressure. The aerogels were mesoporous solids with the average pore size ranging from 12 to 17 nm. The results have been discussed by taking into consideration the hydrolysis and condensation reactions during the sol-gel polymerization of the TEOS precursor.  相似文献   

16.
EPR study of the Cr3+ ion doped l-histidine hydrochloride monohydrate single crystal is done at room temperature. Two magnetically inequivalent interstitial sites are observed. The hyperfine structure for Cr53 isotope is also obtained. The zero field and spin Hamiltonian parameters are evaluated from the resonance lines obtained at different angular rotations and the parameters are: D=(300±2)×10−4 cm−1, E=(96±2)×10−4 cm−1, gx=1.9108±0.0002, gy=1.9791±0.0002, gz=2.0389±0.0002, Ax=(252±2)×10−4 cm−1, Ay=(254±2)×10−4 cm−1, Az=(304±2)×10−4 cm−1 for site I and D=(300±2)×10−4 cm−1, E=(96±2)×10−4 cm−1, gx=1.8543±0.0002, gy=1.9897±0.0002, gz=2.0793±0.0002, Ax=(251±2)×10−4 cm−1, Ay=(257±2)×10−4 cm−1, Az=(309±2)×10−4 cm−1 for site II, respectively. The optical absorption studies of single crystals are also carried out at room temperature in the wavelength range 195-925 nm. Using EPR and optical data, different bonding parameters are calculated and the nature of bonding in the crystal is discussed. The values of Racah parameters (B and C), crystal field parameter (Dq) and nephelauxetic parameters (h and k) are: B=636, C=3123, Dq=2039 cm−1, h=1.46 and k=0.21, respectively.  相似文献   

17.
Activated carbons were prepared by air and carbon dioxide activation, from almond tree pruning, with the aim of obtaining carbons that reproduce the textural and mechanical properties of the carbons currently used in the filtering system of the condenser vacuum installation of a Thermonuclear Plant (CNA; Central Nuclear de Almaraz in Caceres, Spain), produced from coconut shell. The variables studied in non-catalytic gasification series with air were the temperature (215-270 °C) and the time (1-16 h) and the influence of the addition of one catalyst (Co) and the time (1-2 h) in catalytic gasification. In the case of activation with CO2, the influence of the temperature (700-950 °C) and the time (1-8 h) was studied. The resulting carbons were characterized in terms of their BET surface, porosity, and pore size distribution. The N2 adsorption isotherms at 77 K for both series showed a type I behaviour, typical of microporous materials. The isotherms showed that with both gasificant agents the temperature rise produced an increase in the carbon porosity. With regards to the activation time, a positive effect on the N2 adsorbed volume on the carbons was observed. The best carbons of each series, as well as the CNA (carbon currently used in the CNA), were characterized by mercury porosimetry and iodine solution adsorption isotherms. The results obtained allowed to state that several of the carbons produced had characteristics similar to the carbon that is target of reproduction (which has SBET of 741 m2 g−1, Vmi of 0.39 cm3 g−1 and a iodine retention capacity of 429.3 mg g−1): carbon C (gasification with CO2 at 850 °C during 1 h), with SBET of 523 m2 g−1, Vmi of 0.33 cm3 g−1 and a iodine retention capacity of 402.5 mg g−1, and carbon D (gasification with CO2 at 900 °C during 1 h), whose SBET is 672 m2 g−1, Vmi is 0.28 cm3 g−1 and has a iodine retention capacity of 345.2 mg g−1.  相似文献   

18.
The transport properties of Sr0.98La0.02SnO3−δ in the system Sr1−xLaxSnO3−δ, after which the pyrochlore La2Sn2O7 appears, were investigated over the temperature range 4.2-300 K. The oxide was found to be n-type semiconductor with concomitant reduction of Sn4+ into Sn2+. The magnetic susceptibility was measured down to 4.2 K and is less than 3×10−5 emu cgs mol−1 consistent with itinerant electron behavior. The electron is believed to travel in a narrow band of Sn:5s character with an effective mass ∼4 mo. The highest band gap is 4.32 eV and the optical transition is directly allowed. A further indirect transition occurs at 4.04 eV. The electrical conductivity follows an Arrhenius-type law with a thermal activation of 40 meV and occurs by small polaron hopping between nominal states Sn4+/2+. The linear increase of thermo-power with temperature yields an electron mobility μ300 K (2×10−4 cm2 V−1 s−1) thermally activated. The insulating-metal transition seems to be of Anderson type resulting from random positions of lanthanum sites and oxygen vacancies. At low temperatures, the conduction mechanism changes to a variable range hopping with a linear plot Ln ρ−1 vs. T−4. The photo electrochemical (PEC) measurements confirm the n-type conductivity and give an onset potential of −0.46 VSCE in KOH (1 M). The Mott-Schottky plot C−2-V shows a linear behavior from which the flat band potential Vfb=+0.01 VSCE at pH 7 and the doping density ND=1.04×1021 cm−3 were determined.  相似文献   

19.
New fluorophosphate glasses based on MnF2, NaPO3 and MFn (M=Zn2+, Sr2+, Mg2+, Ba2+, Li+, Na+ and K+) have been synthesised and characterized. Large vitreous areas were observed. Samples of 4 mm in thickness have been obtained. These glasses are easy to prepare and stable in ambient air. Depending on the composition and the nature of the M cation, glass transition temperature, Tg, lies between 230 and 314 °C, crystallisation temperature, Tx is between 320 and 475 °C. These glasses are pink coloured, and infrared transmission extends up to 4.5 μm with extrinsic OH absorption band at 3200 cm−1 and other bands around 2200 and 1600 cm−1 that relate to PO4 tetrahedron vibration. Other physical properties including density, microhardness, Young modulus, thermal expansion and refractive index were investigated and correlated to composition.  相似文献   

20.
A number of activated carbons were prepared from a locally available by-product, corncobs, under currently established activation schemes. Obtained carbons were characterized by N2 adsorption at 77 K and the isotherms were analyzed by BET and αs methods. Steam-activation at 900 °C produced a microporous carbon having the highest Sα of 788 m2 g−1, whereas activation with air at 350 °C produced a carbon of Sα = 321 m2/g and possess wider pores. KOH impregnation with char in ratio 1:1 (w/w) and impregnated in the same ratio with the raw material prior to pyrolysis at 700 °C for 1 h, gave CK700, K700 respectively. An additional sample was obtained by oxidizing part of K700 with conc. HNO3. All three KOH carbons show pore structures much close to char itself which may be due to potassium salt left in pores and is not easily leached with repeated water washings. In addition, KOH is more effective on the precursor itself than on its char of already developed porosity. FT-IR spectra show an increase in oxygen functionalties on the carbon surface as a result of activation process and the bands become stronger in the spectra of the acid-treated sample. The oxidized carbon sample showed relatively higher uptake of Pb2+ and MB and its surface chemistry plays the key role in their adsorption, while sharp decrease was observed in the uptake of phenol and mono-nitrophenols from aqueous solutions. An SEM study showed that air activation produce obvious voids reflecting its erosive effect on the external carbon surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号