首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用热中子透射法测定γ-Fe2O3的氢含量。利用差热分析、磁分析以及穆斯堡尔效应研究γ-Fe2O3的相变,实验结果表明在γ-Fe2O3结构中确实含有一定量的氢,当γ-Fe2O3结构中的阳离子空位被H1+,Co2+,Si4+,P5+等离子占据时,将 关键词:  相似文献   

2.
包钴型γ-Fe2O3磁粉矫顽力的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
包钴型γ-Fe2O3磁粉分为包钴γ-Fe2O3(简记为Co-γ-Fe2O3)和包钴包亚铁γ-Fe2O3(简记为CoFe-γ-Fe2O3)两种,它们的矫顽力可比γ-Fe2O3磁粉的提高100至400Oe左右,本工作对这两种磁粉矫顽力增大的原因作了探讨,认为它们矫顽力增大的机制不同:CO-γ-Fe2O3矫顽力增大是由于表面包覆一层Co(OH)2使表面各向异性增大,而CoFe-γ-Fe2O3则是由于表面包覆的是钴铁氧体,γ-Fe2O3与钴铁氧体之间发生耦合作用,使矫顽力增大。  相似文献   

3.
The use of a block copolymer, poly (styrene)-b-poly (acrylic acid) (PS-b-PAA) to prepare a magnetic nanocomposite was investigated. Poly (styrene)-poly (t-butyl acrylate) block copolymer, being synthesized by atom transfer radical polymerization, was hydrolyzed with hydrochloric acid for obtaining PS-b-PAA. The obtained PS-b-PAA was then compounded with the modified γ-Fe2O3, and subsequently the magnetic nanocomposite was achieved. The products were characterized by 1H NMR, FTIR, gel permeation chromatography, thermogravimetric analysis, transmission electron microscopy and vibrating sample magnetometer. The results showed that the nanocomposites exhibited soft magnetism, with the mean diameter of 100 nm approximately.  相似文献   

4.
A stable γ-Fe2O3 paraffin-based ferrofluid was prepared via high energy milling. The magnetic particles were characterized using X-ray diffraction, dynamic light scattering and vibrating sample magnetometer techniques. The rheological properties of the ferrofluid were studied using a standard rotating rheometer. The magnetoviscous effect and thixotropy in the ferrofluid were studied. The formation and destruction of magnetically induced structures and the interactions of nanoparticles and aggregates are discussed.  相似文献   

5.
γ-Fe2O3 has a spinel structure with cation vacancy and is expected to perform as a favorable electrode material for secondary lithium-ion battery. When lithium is inserted electrochemically into γ-Fe2O3, prolonged potential change is observed after the insertion. In this study, we inserted various amount of Li into γ-Fe2O3 (x = 0.66, 1.1, 1.5 in terms of LiXFe2O3), then made the circuit open, measured X-ray diffraction (XRD) patterns at various elapsed time, and analyzed the crystal structure change of γ-Fe2O3 with time by the Rietveld method. The X-ray Rietveld analysis revealed that the iron occupancy of 8a site decreased and that of 16c site increased with lithium insertion process and after lithium insertion, the iron occupancy of 8a site increased and that of 16c site decreased gradually with relaxation time. It is indicated that lithium prefer 8a site to occupy kinetically, on the other hand, prefer 16c site thermodynamically.  相似文献   

6.
本文利用Ar+轰击正分的α-Fe2O3表面,证明了轰击后的表面呈类FeO性质,存在Fe++。提出了由于表面Fe++的3d电子的催化作用,Fe++能把吸附在它上面的H2O先分解成OH-和H+,因而有助于提高光解水的效率的看法。用UPS和XPS等技术证实了类FeO表面吸附水后存在OH-,确认Fe++关键词:  相似文献   

7.
We have carried out systematic studies on well-characterized monodisperse Fe3O4/γ-Fe2O3 core/shell nanoparticles of 2-30 nm having a very narrow size distribution and possessing a uniquely mono-layer of surface γ-Fe2O3. This unique core-shell structure, probably having a disordered magnetic surface state, leads us to three key observations of unusual magnetic properties: i) a very large magnetic exchange anisotropy reaching over 7 × 106 erg/cm3 for the smaller particles, ii) exchange bias behavior in the magnetization data of the core/shell Fe3O4/γ-Fe2O3 nanoparticles, and iii) the temperature dependence of the coercive field following an unusual exponential behavior.  相似文献   

8.
The interparticle magnetic interactions of hematite (α-Fe2O3) nanoparticles were investigated by temperature and magnetic field dependent magnetization curves. The synthesis were done in two steps; milling metallic iron (Fe) powders in pure water (H2O), known as mechanical milling technique, and annealing at 600 °C. The crystal and molecular structure of prepared samples were determined by X-ray powder diffraction (XRD) spectra and Fourier transform infrared (FTIR) spectra results. The average particle sizes and the size distributions were figured out using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The magnetic behaviors of α-Fe2O3 nanoparticles were analyzed with a vibrating sample magnetometer (VSM). As a result of the analysis, it was observed that the prepared α-Fe2O3 nanoparticles did not perform a sharp Morin transition (the characteristic transition of α-Fe2O3) due to lack of unique particle size distribution. However, the transition can be observed in the wide temperature range as “a continuously transition”. Additionally, the effect of interparticle interaction on magnetic behavior was determined from the magnetization versus applied field (σ(M)) curves for 26±2 nm particles, dispersed in sodium oxalate matrix under ratios of 200:1, 300:1, 500:1 and 1000:1. The interparticle interaction fields, recorded at 5 K to avoid the thermal interactions, were found as ∼1082 Oe for 26±2 nm particles.  相似文献   

9.
AgI(α-Fe2O3)复合离子导体相转变温度相互影响的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
赵宗源  陈立泉 《物理学报》1986,35(9):1158-1163
通过测量AgI(α-Fe2O3)复合离子导体的直流和交流电导率,发现α-Fe2O3的Morin转变温度随着AgI含量的增加而降低,电导率测量的结果与磁化率测量和M?ssbauer谱测量结果定性的符合。α-Fe2O3也使AgI的α→β相转变温度显著下降。结果表明复合离子导体二相材料各自存在的相转变温度彼此产生影响。 关键词:  相似文献   

10.
Mesoporous γ-Fe2O3/SiO2 nanocomposite containing 30 mol% of γ-Fe2O3 was prepared by a template-free sol-gel method, and its removal ability for methyl orange (MO) was investigated. The nanocomposite was characterized using X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), Fourier transform infrared (FTIR) absorption measurements, nitrogen adsorption-desorption measurements, and magnetic measurements. The synthesized γ-Fe2O3/SiO2 nanocomposite has a mesoporous structure with an average pore size of 3.5 nm and a specific surface area of 245 m2/g, and it exhibits ferrimagnetic characteristics with the maximum saturation magnetization of 20.9 emu/g. The adsorption of MO on the nanocomposite reaches the maximum adsorbed percentage of ca. 80% within a few minutes, showing that most of MO can be removed in a short time. The MO adsorption data fit well with both Langmuir and Freundlich adsorption isotherms. The maximum adsorption capacity of MO is estimated to be 476 mg/g.  相似文献   

11.
本文采用液相沉积法制备出了纳米SiO2/γ-Fe2O3复合粒子,在其表面负载ZnO, 从而得到了易于磁性固液分离的磁载光催化剂ZnO/SiO2/γ-Fe2O3, 并通过XRD和TEM等测试技术对样品进行了表征。以可溶性染料亚甲基兰等为降解对象, 研究了磁载光催化剂ZnO/SiO2/γ-Fe2O3在紫外光下的光催化活性。结果表明, 在γ-Fe2O3和ZnO之间包覆一层无定形SiO2可使催化剂降佳率由20.76%提高到95.63%,并且该磁载光催化剂对染料有较好的降解效果, 在三次循环使用后仍能保持较好的光催化性能.  相似文献   

12.
The effect of thickness of TiO2 coating on synergistic photocatalytic activity of TiO2 (anatase)/α-Fe2O3/glass thin films as photocatalysts for degradation of Escherichia coli bacteria in a low-concentration H2O2 solution and under visible light irradiation was investigated. Nanograined α-Fe2O3 films with optical band-gap of 2.06 eV were fabricated by post-annealing of thermal evaporated iron oxide thin films at 400 °C in air. Increase in thickness of the Fe2O3 thin film (here, up to 200 nm) resulted in a slight reduction of the optical band-gap energy and an increase in the photoinactivation of the bacteria. Sol-gel TiO2 coatings were deposited on the α-Fe2O3 (200 nm)/glass films, and then, they were annealed at 400 °C in air for crystallization of the TiO2 and formation of TiO2/Fe2O3 heterojunction. For the TiO2 coatings with thicknesses ≤50 nm, the antibacterial activity of the TiO2/α-Fe2O3 (200 nm) was found to be better than the activity of the bare α-Fe2O3 film. The optimum thickness of the TiO2 coating was found to be 10 nm, resulting in about 70 and 250% improvement in visible light photo-induced antibacterial activity of the TiO2/α-Fe2O3 thin film as compared to the corresponding activity of the bare α-Fe2O3 and TiO2 thin films, respectively. The improvement in the photoinactivation of bacteria on surface of TiO2/α-Fe2O3 was assigned to formation of Ti-O-Fe bond at the interface.  相似文献   

13.
Thermal decomposition of the trinuclear complex [Fe2CrO(CH3COO)6(H2O)3]NO3 at 300, 400 and 500 °C gave γ-Fe2O3 nanoparticles along with amorphous chromium oxide, while decomposition of the same starting compound at 600 and 700 °C led to the formation of α-(Fe2/3Cr1/3)2O3 nanoparticles. Size of γ-Fe2O3 nanoparticles, determined by X-ray diffraction, was in the range from 9 to 11 nm and increased with formation temperature growth. Average size of α-(Fe2/3Cr1/3)2O3 nanoparticles was about 40 nm and almost did not depend on the temperature of its formation. γ-Fe2O3 nanoparticles possessed superparamagnetic behavior with blocking temperature 180-250 K, saturation magnetization 29-35 emu/g at 5 K, 44-49 emu/g at 300 K and coercivity 400-600 Oe at 5 K. α-(Fe2/3Cr1/3)2O3 nanoparticles were characterized by low magnetization values (2.7 emu/g at 70 kOe). Such magnetic properties can be caused by non-compensated spins and defects present on the surface of these nanoparticles. The increase of α-(Fe2/3Cr1/3)2O3 formation temperature led to decrease of magnetization (being compared for the same fields), which may be caused by decrease of the quantity of defects or non-compensated spins (due to decrease of particles' surface).  相似文献   

14.
本文中对CoO与Fe2O3的界面进行了研究,结果表明,简单的CoO-γ-Fe2O3界面对于磁性能基本无影响。分析表明,“复杂的扩散界面”不大可能象以往认为的那样是矫顽力增长的主要原因。矫顽力的增长可能是由掺Co造成的一种体效应而不是界面效应。 关键词:  相似文献   

15.
Using a microcircuit fabricated on a diamond anvil cell, in situ conductivity measurements on nanophase (NP) γ-Fe2O3 are obtained under high pressure. For NP γ-Fe2O3, the abrupt increase in electrical conductivity occurs at a pressure of 21.3 GPa, corresponding to a transition from maghemite to hematite. Above 26.4 GPa, conductivity increases smoothly with increasing pressure. No distinct abnormal change is observed during decompression, indicating that transformation is irreversible. The temperature-dependence of the conductivity of NP γ-Fe2O3 was investigated at several pressures, indicating the electrical conductivity of the sample increases with increasing pressure and temperature, and that a remarkable phenomenon of discontinuity occurs at 400 K. The abnormal change is attributed to the electronic phase transitions of NP γ-Fe2O3 due to the variation of inherent cation vacancies. Besides, the temperature-dependence of the electrical conductivity displays semiconductor-like behavior before 33.0 GPa.  相似文献   

16.
We report shape- and field-dependent magnetic properties of ellipsoid-, spindle-, flattened- and rhombohedra-shaped α-Fe2O3 samples prepared by solvothermal technique. We observed that a magnetic spin-flip mechanism, mostly known as Morin transition (TM), depends on the shape of α-Fe2O3 as well as on the applied magnetic field. In each of these structures the obtained value of TM was less than its bulk value of 263 K. We observed that TM shifted from highest 251.4 K for ellipsoid to lowest 220.8 K for rhombohedra structure, with intermediate values of TM for the other two structures. However, for rhombohedra structure TM shifted from 220.8 to 177.5 K under the external magnetic field of 100 Oe-30 kOe, respectively. The observed lowering of TM in the structured sample was analyzed in terms of elementary size, shape of the nanocrystallites, lattice parameters and occupancy of Fe+3 ions as well. These parameters were determined from the Rietveld refinement process using MAUD software.  相似文献   

17.
Highly sensitive gas sensors are realized from In2O3 mixed α-Fe2O3 nanorods. At 200 °C, the sensitivity of the sensors upon exposure to 200 ppm ethanol is 31.3, and the sensors exhibit linear dependence of the sensitivity on the ethanol concentration at 100 °C and 200 °C. In contrast, nonlinear gas sensing characteristics are observed at 300 °C and 400 °C. The relationship between sensitivity and ethanol concentration is discussed by using the conduction model, and the experimental data are in good agreement with the obtained equations. Our results imply that In2O3 mixed α-Fe2O3 nanorods are good candidates for nano-scale gas sensors and the relationship between sensitivity and ethanol concentration is significantly influenced by temperatures.  相似文献   

18.
α-Fe2O3 nanodiscs and Mn3O4 nanoparticles have been prepared by the 1,10-phenanthroline as complexing agent in the presence of sodium hydroxide under hydrothermal conditions. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectra. The average diameter of α-Fe2O3 nanodiscs is of 2 μm. In the case of Mn3O4 sample, the Mn3O4 crystallites are nanoparticles with an average size of 34 nm. A formation mechanism for the α-Fe2O3 and Mn3O4 nanomaterials was proposed.  相似文献   

19.
The identification by 57Fe internal field nuclear magnetic resonance (NMR) of hyperfine fields at four Fe sites in the (average) tetragonal unit cell of vacancy-ordered γ-Fe2O3 (maghemite) is reported. The effects of vacancy redistribution due to annealing the partially vacancy-ordered form has been observed in the 57Fe lineshape. In addition, the reduction of the particle size of the vacancy-ordered form has been observed to gradually eliminate the vacancy ordering and then to cause a transition from ferrimagnetism to superparamagnetism.  相似文献   

20.
The conducting protonated polyaniline (ES)/γ-Fe2O3 nanocomposite with the different γ-Fe2O3 content were synthesized by in-situ polymerization. Its morphology, microstructure, DC conductivity and magnetic properties of samples were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), four-wire-technique, and vibrating sample magnetometer (VSM), respectively. The microwave absorbing properties of the nanocomposite powders dispersing in wax coating with the coating thickness of 2 mm were investigated using a vector network analyzers in the frequency range of 7–18 GHz. The pure ES has shown the absorption band with a maximum absorption at approximately 16 GHz and a width (defined as frequency difference between points where the absorption is more than 8 dB) of 3.24 GHz, when 10% γ-Fe2O3 by weight is incorporated , the width is broadened to 4.13 GHz and some other absorption bands appear in the range of 7–13 GHz. The parameter dielectric loss tan δe (=ε″/ε′) in the 7–18 GHz is found to decrease with increasing γ-Fe2O3 contents with 10%, 20%, 30%, respectively, but magnetic loss tan δm (=μ″/μ′) increases with increasing γ-Fe2O3 contents. The results show that moderate content of γ-Fe2O3 nanoparticles embedded in protonated polyaniline matrix may create advanced microwave absorption properties due to simultaneous adjusting of dielectric loss and magnetic loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号