首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of structural and electrical properties have been carried out on a number of glasses with wide ranging compositions in the glass systems Li2O·MO·Bi2O3·B2O3 (where M=Zn or Cd), in order to understand the effect of transition metal (TM) ions on the structure of these glasses. The density and molar volume measurements have also been made to understand the structural changes occurring in these glasses. The dc conductivity measured in the temperature range 423-623 K obeys Arrhenius law. It increases with increase in Li2O/MO ratio. The results of infrared spectra indicate that TM ions (Zn2+ or Cd2+) behave as network former in the present system. Boron exists in both tri- and tetra-hedral units in these glasses and no boroxol ring formation takes place in the glass structure. Values of theoretical optical basicity have also been reported.  相似文献   

2.
PbO-Sb2O3 glasses added with different concentrations of As2O3 (10-55 mol%) were prepared to understand their IR spectra, elastic properties (Young's modulus E, Shear modulus G, microhardness H), optical absorption and dielectric properties (constant ε, loss tan δ, ac conductivity σac over a moderately wide range of frequency and temperature and breakdown strength in air medium at room temperature). Results have indicated that the structure of the PbO-Sb2O3-As2O3 glass is more rigid when the concentration of As2O3 is around 40 mol%.  相似文献   

3.
AC measurements were performed on the thortveitite-like layered compounds, FeRGe2O (R=Pr,Tb) in order to study their dielectric features, e.g. as a function of temperature. The main electrical response lies on impedance plots composed of two successive arcs with depressed centers. Bulk conductivity behavior is mostly Arrhenius for the measured temperatures. The associated bulk activation energies are close to 1 eV. Raw data were used to follow the temperature dependence of the dynamic parameters, ε′(ω) and σ′(ω). From logarithmic σ′(ω) vs. ω curves the dc component was obtained. ε′(ω) vs. log ω curves exhibit a dispersive behavior at low frequencies, reflecting blocking effects. Edc and Eac activation energies were also calculated, the last one obtained from σ′(ω) vs. 1000/T plots. Conductivity results suggest the occurrence of an extrinsic conducting mechanism. A structural instability was detected via the temperature dependence of permittivity, which has been ascribed to the presence of Ga-O-Ga bonds having associated angles different of 180°. Analyses of the results show that the interchange of Tb and Pr in the general formula FeRGe2O7 (R=Pr, Tb) involves only small differences in their global ac and dc behavior.  相似文献   

4.
BaO-Al2O3-P2O5 glasses containing different concentrations of NiO (ranging from 0 to 1.0 mol%) were prepared. A number of studies viz., chemical durability, differential thermal analysis, spectroscopic (infrared, optical absorption spectra), magnetic susceptibility and dielectric properties (constant ε′, loss tan δ, AC conductivity σAC over a range of frequency and temperature) of these glasses have been carried out. The studies on chemical durability indicate that there is a significant increase in the corrosion resistance of the glasses; where as the results of differential thermal analysis suggests that there is a substantial improvement in the glass forming ability, with increase in the concentration of NiO up to 0.6 mol% in the glass matrix. The optical absorption, magnetic susceptibility and IR spectral studies point out nickel ions occupy both tetrahedral and octahedral positions in the glass network; the later positions seems to be dominant when the concentration of NiO is beyond 0.6 mol% in the glass matrix. The studies of dielectric properties reveal that the presence of nickel oxide in the glass network causes a considerable improvement in the insulating strength of the se glasses when the concentration of NiO?0.6 mol%.  相似文献   

5.
Dielectric properties, viz. dielectric constant ε′, loss tan δ and a.c conductivity σac (over a wide range of frequency and temperature) and dielectric breakdown strength of PbO-Sb2O3-As2O3 glasses doped with V2O5 (ranging from 0 to 0.5 mol%) are studied. Analysis of these results, based on optical absorption and ESR spectra, indicates that the insulating strength of the glasses is comparatively high when the concentration of V2O5 is about 0.3 mol% in the glass matrix.  相似文献   

6.
Glasses with composition xBi2O3·(30−x)M2O·70B2O3 (M=Li, Na) containing 2 mol% V2O5 have been prepared over the range 0≤x≤15 (x is in mol%). The electron paramagnetic resonance spectra of VO2+ of these glasses have been recorded in the X-band (≈9.3 GHz) at room temperature (RT≈300 K). Spin Hamiltonian parameters, g, g, A, A, dipolar hyperfine coupling parameter, P, and Fermi contact interaction parameter, K, have been calculated. The molecular orbital coefficients, α2 and γ2, have been calculated by recording the optical transmission spectra. In xBi2O3·(30−x)Li2O·70B2O3 glasses there is decrease in the tetragonality of the V4+O6 complex for x up to 6 mol% whereas for x≥6 mol%, tetragonality increases. In xBi2O3·(30−x)Na2O·70B2O3 glasses there is increase in the tetragonality of the V4+O6 complex with increasing x. The 3dxy orbit expands with increase in Bi2O3:M2O ratio. Values of the theoretical optical basicity, Λth, have also been reported. The DC conductivity increases with increase in temperature. The order of conductivity is 10−5 ohm−1 m−1 at low temperature and 10−3 ohm−1 m−1 at high temperature. The DC conductivity decreases and the activation energy increases with increase in Bi2O3:M2O ratio.  相似文献   

7.
Ternary-phase ceramic system of Li2O Al2O3 4SiO2 doped with CuO, FeO and TiO2 has been prepared and subjected to dc electrical conductivity and thermally stimulated depolarization current (TSDC) measurements as a function of temperature (30-250 °C) and field strength. The electrical conductivity results are explained by assuming both ionic and electronic conduction mechanisms coexist with different contributions over the whole temperature range of experiments. TSDC spectra have been found to be characterized by a broad intense relaxation peak, which can be attributed to an ionic charge polarization. The broad relaxation transitions are apparently a result of the nonuniform nature of this process. Activation energies are calculated for both dc electrical conductivity and TSDC according to Arrhenius equation and initial rise method, respectively.  相似文献   

8.
The complex dielectric and AC conductivity response of BaBi2Nb2O9 relaxor ferroelectric ceramics were studied as a function of frequency (100 Hz-10 MHz) at various temperatures. The observed dielectric behavior was characterized by two types of relaxation processes which were described by the ‘universal relaxation law’. The frequency dependence of conductivity which showed a classical relaxor behavior followed the Jonscher's universal law σ(ω)=σ0+Aωn. The exponent n exhibited a minimum in the vicinity of temperatures of dielectric anomaly while the pre-factor A showed a maximum. The temperature dependence of n followed the Vogel-Fulcher relation with activation energy of about 0.14 eV.  相似文献   

9.
The [TMA]2Zn0.5Cu0.5Cl4 hybrid material was prepared and its dielectric spectra were measured in the 10−1 Hz-106 Hz frequency range and 200-305 K temperature interval. The dielectric permittivity showed a ferroelectric-paraelectric phase transition at 293 K. Double relaxation peaks are observed in the imaginary part of the electrical modulus, suggesting the presence of grain and grain boundary in the sample. The frequency dependent conductivity was interpreted in term of Jonscher's law: σ(ω)=σdc+n. The temperature dependent of the dc conductivity (σdc) was well described by the Arrhenius equation: σdcT=σo×exp(−Ea/kT).  相似文献   

10.
Particulate composites with composition (x)BaTiO3+(1−x)Ni0.92Co0.03Cu0.05Fe2O4 in which x varies as 1, 0.85, 0.70, 0.55 and 0 (in mol%) were prepared by the conventional double sintering ceramic technique. The presence of two phases viz. ferromagnetic (Ni0.92Co0.03Cu0.05Fe2O4) and ferroelectric (BaTiO3) was confirmed by X-ray diffraction analysis. The dc resistivity and thermo-emf measurements were carried out with variation of temperature. The ac conductivity (σac) measurements investigated in the frequency range 100 Hz to 1 MHz conclude that the conduction in these composites is due to small polarons. The variation of dielectric constant and loss tangent with frequency (20 Hz to 1 MHz) was studied. The static magnetoelectric conversion factor, i.e. dc (dE/dH)H was measured as a function of intensity of applied magnetic field. The changes were observed in electrical properties as well as in magnetoelectric voltage coefficient as the molar ratio of the constituent phases was varied. A maximum value of magnetoelectric conversion factor of 536.06 μV/cm Oe was observed for the composite with 70% BaTiO3+30% Ni0.92Co0.03Cu0.05Fe2O4 at a dc magnetic field of 2.3 K Oe. The maximum magnetoelectric conversion output has been explained in terms of ferrite-ferroelectric content, applied static magnetic field and resistivity.  相似文献   

11.
Characterization of the (76V2O5-24P2O5)1−X (Li3PO5)X, where X=0.0,0.01,0.02,0.10 and 0.15, glass has been done using X-ray diffraction and differential thermal analysis (DTA). The dc conductivity of the glass samples was studied over a temperature range from 300 to 593 K. The temperature dependence of dc conductivity shows two regions. One at relatively high temperature range, above θD/2, and the other at relatively low temperature range, below θD/2. The I-V characteristics of the glasses have been studied as a function of both temperature and Li3PO4 content. The I-V characteristics exhibits threshold switching with differential negative resistance. It's found that both the threshold voltage (Vth) and threshold current (Ith) are dependent on the temperature and lithium phosphate concentration.  相似文献   

12.
ZnO-ZnF2-B2O3 glasses containing small concentrations of TiO2 ranging from 0 to 0.6 mol% were prepared. Dielectric properties (constant ε′, loss tan δ, ac conductivity σac over a moderately wide range of frequency and temperature at room temperature in air medium) of these glasses have been studied. The results of these studies were analyzed with the aid of data on optical absorption, ESR and IR spectra of these glasses. The analysis suggests that when the concentration of TiO2>0.2 mol%, the titanium ions, in addition to Ti4+ state, co-exist in Ti3+ state, act as modifiers and reduce the breakdown strength.  相似文献   

13.
New germanosilicate glasses giving the crystallization of yttrium iron garnet Y3Fe5O12 (YIG) and Bi-doped YIG, 23Na2O-xBi2O3-(12−x)Y2O3-25Fe2O3-20SiO2-20GeO2 (mol%), are developed, and the laser-induced crystallization technique is applied to the glasses to pattern YIG and Bi-doped YIG crystals on the glass surface. It is clarified from the Mössbauer effect measurements that iron ions in the glasses are present mainly as Fe3+. It is suggested from the X-ray diffraction analyses and magnetization measurements that Si4+ ions are incorporated into YIG crystals formed in the crystallization of glasses. The irradiations (laser power: 32-60 mW and laser scanning speed: 7 μm/s) of continuous wave Yb:YVO4 fiber laser (wavelength: 1080 nm) are found to induce YIG and Bi-doped YIG crystals, indicating that Fe3+ ions in the glasses act as suitable transition metal ions for the laser-induced crystallization. It is suggested that YIG and Bi-doped YIG crystals in the laser irradiated part might orient. The present study will be a first step for the patterning of magnetic crystals containing iron ions in glasses.  相似文献   

14.
The crystallization mechanism and conductivity of lithium aluminum germanium phosphate [LAGP] glass-ceramics fabricated from Li1+xAlxGe2−x(PO4)3 (x=0.0-0.7) glass system were investigated as a function of Al2O3 additions. A non-isothermal analysis was performed to study the crystallization behavior of LAGP glass-ceramics at various heating rates (5-25K min−1) by the Kissinger equation and the Augis-Bennett equation, illustrating volume crystallization for the glass-ceramics. The crystal identification and microstructure in glass-ceramics containing various Al2O3 contents were analyzed by means of XRD and FESEM. The main phase of the glass-ceramics was found to be LiGe2(PO4)3, with AlPO4 as the impurity phase. Additionally the highest total ionic conductivity (5.8×10−4 S/cm) at room temperature was obtained when x=0.5 for Li1+xAlxGe2−x(PO4)3 (x=0.0-0.7) glass-ceramics, suggesting that it was a promising electrolyte for practical application in all-solid-state lithium batteries.  相似文献   

15.
Glasses with compositions 41CaO(52 − x)SiO24P2O5·xFe2O33Na2O (2 ≤ x ≤ 10 mol.%) were prepared by melt quenching method. Bioactivity of the different glass compositions was studied in vitro by treating them with simulated body fluid (SBF). The glasses treated for various time periods in SBF were evaluated by examining apatite formation on their surface using grazing incidence X-ray diffraction, Fourier transform infrared reflection spectroscopy, scanning electron microscopy and energy dispersive spectroscopy techniques. Increase in bioactivity with increasing iron oxide content was observed. The results have been used to understand the evolution of the apatite surface layer as a function of immersion time in SBF and glass composition.  相似文献   

16.
Submicron-sized polyhedral Li4Ti5−xSnxO12 (x=0.0, 0.05, and 0.1) materials were successfully prepared by a single-step molten salt method. The structural, morphological, transport and electrochemical properties of the Li4Ti5−xSnxO12 were studied. X-ray diffraction patterns showed the formation of a cubic structure with a lattice constant of 8.31 Å, and the addition of dopants follows Vegard's law. Furthermore, FT-IR spectra revealed symmetric stretching vibrations of octahedral groups of MO6 lattice in Li4Ti5O12. The formation of polyhedral submicron Li4Ti5−xSnxO12 particles was inferred from FE-SEM images, and a particle size reduction was observed for Sn-doped Li4Ti5O12. The chemical composition of Ti, O and Sn was verified by EDAX. The DC electrical conductivity was found to increase with increasing temperature, and a maximum conductivity of 8.96×10−6 S cm−1 was observed at 200 °C for Li4Ti5O12. The galvanostatic charge–discharge behavior indicates that the Sn-doped Li4Ti5O12 could be used as an anode for Li-ion batteries due to its enhanced electrochemical properties.  相似文献   

17.
Glasses with composition xGeO2.(0.30−x)M2O.0.70B2O3 (M=Li, K) containing 2.0 mol% of V2O5 have been prepared in the range 0.00≤x≤0.15 by normal melt quenching method. Electron paramagnetic resonance (EPR), optical transmission and absorption spectra and dc conductivity of these glasses have been studied. Spin Hamiltonian parameters (SHPs) of VO2+ ions, dipolar hyperfine coupling parameter, P, Fermi contact interaction parameter, K and molecular orbital coefficients (α2 and γ2) have been calculated. In GeO2·Li2O·B2O3 glasses there is no change in the tetragonality of the V4+O6 complex and the size of 3dxy orbit also remains unchanged with increase in GeO2 content. In GeO2·K2O·B2O3 glasses, there is an increase in the tetragonality of the V4+O6 complex and the 3dxy orbit expands with increase in GeO2 content. Values of the theoretical optical basicity, Λth, have also been reported. Optical band gap decreases with increase in GeO2 content. The dc conductivity of these glasses decreases and the activation energy increases with increase in GeO2:M2O ratio.  相似文献   

18.
The authors report the fabrication of ZnO-based metal-oxide-semiconductor field effect transistors (MOSFETs) with a high quality SiO2 gate dielectric by photochemical vapor deposition (photo-CVD) on a sapphire substrate. Compared with ZnO-based metal-semiconductor FETs (MESFETs), it was found that the gate leakage current was decreased to more than two orders of magnitude by inserting the photo-CVD SiO2 gate dielectric between ZnO and gate metal. Besides, it was also found that the fabricated ZnO MOSFETs can achieve normal operation of FET, even operated at 150 °C. This could be attributed to the high quality of photo-CVD SiO2 layer. With a 2 μm gate length, the saturated Ids and maximum transconductance (Gm) were 61.1 mA/mm and 10.2 mS/mm for ZnO-based MOSFETs measured at room temperature, while 45.7 mA/mm and 7.67 mS/mm for that measured at 150 °C, respectively.  相似文献   

19.
Experimental study of dc and ac transport properties of CuInSe2/ZnO heterostructure is presented. The current-voltage (I-V) and frequency dependent capacitance (C-f) characteristics of CuInSe2/ZnO heterostructure were investigated in the temperature range 160-393 K. The heterostructure showed non-ideal behavior of I-V characteristics with an ideality factor of 3.0 at room temperature. Temperature dependent dc conductivity studies exhibited Arrhenius type behavior and revealed the presence of trap level. The C−2-V plot measured at frequency 50 kHz had shown non-linear behavior. An increase in capacitance with temperature was observed. The capacitance-frequency characteristics exhibited a transition between low frequency and the high frequency capacitance. As the temperature was lowered the transition occurred at lower frequencies. The frequency and temperature dependent device capacitance had shown a defect state having activation energy of 108 meV.  相似文献   

20.
The Ruddlesden–Popper (RP) phase compounds (Sr0.95R0.05)3Ti2O7 (R=Er, Y, Dy, Gd, Eu, Sm, Nd and La) were prepared, and their transport and thermoelectric properties were investigated. The results indicate that high-T electrical resistivity ρ (300 K<T<1000 K) increases monotonically with temperature and basically has a relation ρTM, with M varying from 0.91 to 1.92 at temperatures T>~650 K, suggesting acoustic phonon scattering is dominant. At low temperatures (5 K<T<300 K), ρ for (Sr0.95R0.05)3Ti2O7 (R=Nd and La) decreases monotonously with decreasing temperature, whereas ρ for (Sr0.95R0.05)3Ti2O7 (R=Er, Y, Dy, Gd, Eu and Sm) decreases first, and then increases instead as T decreases to a critical temperature Tc. Moreover, electrical conductivity σT1/2 holds at lower temperatures, indicating that the electron–electron interaction caused by the presence of disorder dominates the transport process at the low temperatures. Besides, experiments show that at T<~400 K the lattice thermal conductivity of the doped compounds basically decreases with increase of the atomic mass of dopants. Generally, the figure of merit (ZT) at 1000 K increases first, and then decreases with the increase of the dopants' ionic radius, and the largest ZT is achieved in (Sr0.95Gd0.05)3Ti2O7 mainly owing to its lower lattice thermal conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号