首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Vitrification suppression in the (V2O5)1−x (P2O5)x glasses where x=0.10, 0.15, 0.20, and 0.25 was controlled by changing the rate of quenching glasses. The structure variations occurring in the glasses were detected by differential thermal analysis and optical microscope. The results implied the separation and growth of V2O5 orthorhombic microcrystal in the samples with x=0.10 and 0.15 whereas other samples did not illustrate remarkable changes in their microstructure. However, in temperature range between 300 and 473 K a semiconducting behavior for all samples appears during the study of electrical conductivity-temperature dependence. A decrease in conductivity values accompanied with some variations in activation energies by reducing quenching rate was observed. The conductivity results suggested that the conduction occurs by the phonon assisted hopping of a small polaron between V4+ and V5+ states at relatively higher temperature range above θD/2. Whereas at relatively low temperatures the conduction may occur by electron jumping between filled and empty states at Fermi level in the disordered matrix besides polaronic conduction. Reasonable values for the density of localized states, carrier concentration and carrier mobility were estimated and discussed. Also, dielectric constant and dielectric loss were studied as a function of frequency at different temperatures confirming the structure variations in the glass system.  相似文献   

2.
Poly(methyl metacrylate)/montmorillonite (PMMA)/(MMT) nanocomposites were prepared by in-situ solution polymerization of methyl methacrylate monomer in the presence of the organic modified MMT-clay. After the organic modification by ionic exchanging with amine salts, the organoclay becomes more hydrophobic and compatible then pristine clay with methyl methacrylate monomer. The modified clays are characterized by wide angle X-ray diffraction (WAXRD). The powdered X-ray diffraction and transmission electron microscopy (TEM) techniques were employed to study the morphology of the PMMA/clay nanocomposites which indicate that the modified clays are dispersed in PMMA matrix to form both exfoliated and intercalated PMMA/modified clay nanocomposites. The thermo-mechanical properties were measured by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC). Gas permeability analyzer (GPA) shows the excellent gas barrier property of the PMMA nanocomposites which is in good agreement with the morphology. The optical property was measured by UV-vis spectroscopy which shows that these materials have good optical clarity, and UV resistance.  相似文献   

3.
In this article, calcium nitrate (Ca(NO3)2) and disodium hydrogen phosphate (Na2HPO4) are used as calcium and phosphorous sources to prepare hydroxyapatite nanoparticles by the hydrothermal method. Plate-like nanocrystals of hydroxyapatite are synthesized with the aid of sodium tripolyphosphate. The results show that sodium tripolyphosphate increases the diameters of the hydroxyapatite nanoparticles during the hydrothermal process. When the concentration of sodium tripolyphosphate reaches 0.015 M, the average aspect ratio of those nanoparticles is close to 1. The strong surface adsorption caused by sodium tripolyphosphate may answer for the morphological change of hydroxyapatite crystal.  相似文献   

4.
Nitrogen-doped TiO2 (N-TiO2) nanoparticles have been successfully prepared via a direct and simple hydrothermal reaction of a commercial Degussa P25 with triethanol amine as solvent and nitrogen source. As-prepared N-TiO2 was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible light (UV-vis) absorption spectra, electron probe microanalysis (EPMA) and X-ray photoelectron spectroscopy (XPS) techniques. The results confirm that hydrothermal reaction is an effective way to incorporate nitrogen into the TiO2 lattice, especially nitrogen substitute for titanium. The nitrogen concentration in TiO2 can be as high as 21% (molar ratio), which is described as Ti1−yO2−xNx+y (in this paper, x=0.36, y=0.27, i.e., Ti0.73O1.64N0.63). The chemical statuses of N have been assigned to N-Ti-O and O-N-O in the TiO2 lattice as identified by XPS. Photocatalytic degradation of methyl orange has been carried out in both UV-vis (simulated solar light) and the visible region (λ>400 nm). N-TiO2 exhibits higher activity than the Degussa P25 TiO2 photocatalyst, particularly under visible-light irradiation. This study has developed a promising and practical pathway to new nitrogen-doped photocatalysts.  相似文献   

5.
The structural features of the natural chrysotile have been studied by transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectrometry, thermogravimetric and low-temperature nitrogen adsorption techniques. The chrysotile fibers are present as nanotubes of cylindrical morphology of various forms (rectilinear cylinders, cylinders with cup-like ends, tube twins, cylinder-in-cylinder and cone-in-cone tubes) with the outer diameters of 15-30 nm and the inner ones of 2-6 nm. The surface areas of the raw and the acid leached chrysotile samples obtained by nitrogen adsorption are 15.3 and 63.6 m2/g with the average pore diameter 9.8 and 3.9 nm, respectively. The inner and the outer surfaces of the chrysotile nanotubes are evaluated by the geometric method as 16 and 80 m2/g. The thermogravimetric analysis reveals two main phases of mass loss associated with dehydration and dehydroxylation (with two overlaying steps) processes. The first phase is attributed to the dehydration reaction at low temperature range 293-450 K with activation energy in the range 22-32 kJ/mol. The second phase occurs between 798 and 985 K with activation energy 249-298 kJ/mol for the raw sample and 130-146 kJ/mole for the acid treated one.  相似文献   

6.
Casein, a natural biopolymer contained in milk, has been successfully intercalated into a Ca-Al-LDH host structure. Synthesis was performed by rehydration of tricalcium aluminate in the presence of casein. The resulting nanohybrids were characterized by powder X-ray diffraction (XRD), elemental analysis, infrared spectroscopy (IR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Further experiments revealed that the single protein strains intercalate instead of the entire casein sub micelles, which are present in milk. Additionally, the pure phospho protein fractions α- and β-casein, which make up ∼80 wt% of total casein were isolated and intercalated into the Ca-Al-LDH host structure, yielding a biopolymer-inorganic hybrid material.  相似文献   

7.
Flower-like and rod-like boehmite has been synthesized using a hydrothermal route in a buffer solution. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS) and Fourier transform infrared (FTIR). The SEM and the TEM images of products obtained after different processing times reveal that the buffer solution plays an important role in the rod-like boehmite formation. This approach may allow us to have a better control of the size and morphology of the crystalline boehmite. And the surface area of boehmite hollow microspheres was calculated using Brunauer-Emmett-Teller (BET) model. The possible formation mechanism was proposed and discussed.  相似文献   

8.
This study reports the simple synthesis of MFe2O4 (where M=Zn, Mn and Co) nanostructures by a thermal treatment method, followed by calcination at various temperatures from 723 to 873 K. Poly(vinyl pyrrolidon) (PVP) was used as a capping agent to stabilize the particles and prevent them from agglomeration. The pyrolytic behaviors of the polymeric precursor were analyzed by use of simultaneous thermo-gravimetry analyses (TGA) and derivative thermo-gravimetry (DTG) analyses. The characterization studies were conducted by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Fourier transform infrared spectroscopy (FT-IR) confirmed the presence of metal oxide bands for all the calcined samples. Magnetic properties were demonstrated by a vibrating sample magnetometer (VSM), which displayed that the calcined samples exhibited different types of magnetic behavior. The present study also substantiated that magnetic properties of ferrite nanoparticles prepared by the thermal treatment method, from viewing microstructures of them, can be explained as the results of the two important factors: cation distribution and impurity phase of α-Fe2O3. These two factors are subcategory of the preparation method which is related to macrostructure of ferrite. Electron paramagnetic resonance (EPR) spectroscopy showed the existence of unpaired electrons ZnFe2O4 and MnFe2O4 nanoparticles while it did not exhibit resonance signal for CoFe2O4 nanoparticles.  相似文献   

9.
TiO2 (anatase and rutile) nanoparticles with an average crystallite size of 20-40 nm have been prepared at room temperature by polyol-mediated synthesis technique in a semi-aqueous solvent medium using titanium iso-propoxide as the titanium source, acetone as the oil phase and ethylene glycol as the stabilizer. Phase and microstructure of the resultant materials have been characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Photocatalytic degradation of acetaldehyde using TiO2 nanoparticles was investigated by gas-chromatography technique.  相似文献   

10.
Needle-like SrAl2O4:Eu2+, Dy3+ phosphors had been prepared by calcining the precursors obtained from hydrothermal process at the temperature of 1100 °C in a weak reductive atmosphere of active carbon. The crystal structure, morphology and optical properties of the composites were characterized. X-ray diffraction (XRD) patterns illustrated that the single-phase SrAl2O4 was formed at 1100 °C, which is much lower than that prepared by the traditional method. The transmission electron microscope (TEM) observation revealed the precursors and the resulted SrAl2O4:Eu2+, Dy3+ phosphors had well-dispersed distribution and needle-like morphology with an average diameter about 150 nm at the center and the length up to 1 μm. After irradiation by ultraviolet radiation with 350 nm for 5 min, the phosphors emit green color long-lasting phosphorescence corresponding to the typical emission of Eu2+ ion, both the PL spectra and luminance decay revealed that the phosphors had efficient luminescent and long lasting properties.  相似文献   

11.
Carbon nanotubes (CNTs) are functionalized by vinyltriethoxysilane (VTES) to incorporate the -O-C2H5 functional group and become VTES—CNT. The VTES—CNTs are added to the modified DGEBA epoxy resin that contains silicon to induce the sol-gel reaction. The final products are organic/inorganic nanocomposites. Thermogravimetric analysis (TGA) and differential scanning calorimeter (DSC) are used to study the thermal property of nanocomposites. The Tg was increased from 118 to 160 °C and char yield of composites that contained 9 wt% CNT at 750 °C was increased by 46.94%. The integral procedural decomposition temperature (IPDT) was increased from 890 to 1571 °C. The limiting oxygen index (LOI) and UL-94 tests were classified as the flame retardance. The LOI of composites was increased from 22 to 27 and the UL-94 changed from V-1 to V-0 when the contents were increased to 9 wt%. The nanocomposites had a higher char yield and were highly flame retardant. The products can meet to the requirements of halogen-free and phosphorus-free ecological flame retardant.  相似文献   

12.
The formation mechanism of excess titanium in BaTiO3 nanoparticles is different from that in BaTiO3 bulk materials. In this study, we analyzed the concentration of excess titanium in BaTiO3 nanoparticles, which were directly synthesized from solution at 65 °C and it was found that it can reach an abnormal high concentration and keep the normal perovskite structure. The mechanism is discussed from the points of both defect chemistry and surface effect. The dielectric property of the ceramics fabricated from as-prepared nanoparticles with different concentration of excess titanium is also studied.  相似文献   

13.
Titania nanotubes are synthesized via hydrothermal treatment of TiO2 powders in NaOH solution at 110 °C for 90 h, followed by annealing at 400 °C. The morphology of nanotubes is characterized by field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Microscopic observations on the transformation process indicate that the nanotubes retain their shapes after the annealing process. The crystalline structure and composition are examined by X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX). The results confirm the absence of impurity peaks and the crystal structure change from nanotubes to anatase phase after annealing treatment. The average specific surface area of the particles is probed using gas adsorption-desorption measurements. The prepared tubular samples exhibit greater specific surface areas and higher pore volumes than the precursor. Moreover, it is apparent that the hydrothermal treatment modifies the optical properties of the titania samples and red-shifts the UV absorption to a band gap energy of 3.04 eV after annealing treatment.  相似文献   

14.
Three zwitterionic surfactants, dodecyl dimethyl carboxylbetaine (DCB), dodecyl dimethyl sulfobetaine (DSB) and N-dodecyl-β-aminoprpionate (DAP), intercalated into NiZn-layered hydroxide salts (NZL-DCB, NZL-DSB and NZL-DAP) were synthesized by the coprecipitation method. The effect of surfactant content, pH, temperature and time of hydrothermal treatment on preparation was investigated and discussed. The NZL-DCB, NZL-DSB and NZL-DAP were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetry analysis and differential thermal analysis (TGA/DTA). The results showed that basal spacings of NZL-DCB, NZL-DSB and NZL-DAP were around 3.45, 3.68 and 3.94 nm, respectively. DCB, DSB and DAP probably form an overlapped bilayer in the gallery. TGA/DTA data indicated that NZL-DCB, NZL-DSB and NZL-DAP displayed three loss weight stages: loss of adsorbed and structural water, dehydroxylation of matrix and decomposition of nitrate ions, decomposition and combustion of surfactants. Furthermore, chemical analysis data, BET surface area and scanning electron microscopic (SEM) were also measured and analyzed.  相似文献   

15.
Lanthanum aluminate ceramic powders could be prepared by a combined gel precipitation process from metal chlorides using ammonia. A slight modification in the conventional gel precipitation technique was carried out by introducing a step of ultrasonication followed by centrifugal washing of the gel. The dried gels produced pure phase lanthanum aluminate powders on calcination at 1100 °C for the combined gel-precipitated powders, and at 600 °C for the washed gel. The phase evolution was studied and it was found that the delay in obtaining monophasic LaAlO3 in the combined gel-precipitated powder owed to the crystallization of an impure phase LaOCl. This phase was not detected in the washed gel (WG) powders. TEM micrographs showed a uniform morphology for the calcined WG powders, which were in contrast to the irregular particles in the gel-precipitated (GP) powders. The uniform morphology was assigned to the ultrasonic effects during washing of the gel.  相似文献   

16.
Well-dispersed InP nanocrystals have been synthesized via a hydrothermal reaction of In–ethylenediamine tetraacetic acid (EDTA) complex with red phosphorus and KBH4 in aqueous solution at 160–200 °C for 26 h. The InP nanocrystals were characterized by powder X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy (TEM). The XRD patterns showed (1 1 1), (2 0 0), (2 2 0), (3 1 1), (2 2 2), (4 0 0) and (3 3 1) diffraction lines of the cubic InP nanocrystals. The TEM study revealed that the morphology of InP nanocrystals are of well-dispersed spherical shape. The size of InP nanocrystals can be controlled by changing the reaction temperature. The average InP nanocrystallites diameter is increased from 8.7 to 15.8 nm as the temperature increases from 160 to 200 °C. The Raman spectrum showed the transverse-optic (TO) and longitudinal-optic (LO) mode from InP nanocrystallites, and the LO and TO modes shift to lower frequencies with a decrease in the size of InP nanocrystals. The EDTA plays a key role in the nucleation and growth of InP nanocrystals, and the reaction mechanism is discussed.  相似文献   

17.
Nanocrystalline thin films of TiO2 were prepared on glass substrates from an aqueous solution of TiCl3 and NH4OH at room temperature using the simple and cost-effective chemical bath deposition (CBD) method. The influence of deposition time on structural, morphological and optical properties was systematically investigated. TiO2 transition from a mixed anatase–rutile phase to a pure rutile phase was revealed by low-angle XRD and Raman spectroscopy. Rutile phase formation was confirmed by FTIR spectroscopy. Scanning electron micrographs revealed that the multigrain structure of as-deposited TiO2 thin films was completely converted into semi-spherical nanoparticles. Optical studies showed that rutile thin films had a high absorption coefficient and a direct bandgap. The optical bandgap decreased slightly (3.29–3.07 eV) with increasing deposition time. The ease of deposition of rutile thin films at low temperature is useful for the fabrication of extremely thin absorber (ETA) solar cells, dye-sensitized solar cells, and gas sensors.  相似文献   

18.
Nanotubes of TiO2(B) phase doped with 5 at.% of vanadium (V) have been synthesized by a hydrothermal method, followed by calcination at 300 °C in air and argon atmosphere, respectively. These nanotubes exhibit ferromagnetic character with clear hysteresis loop at room-temperature. X-ray diffraction and Fourier transform infrared spectroscopy confirm that the ferromagnetic behavior is intrinsic to the material and not due to other phases and/or metallic clusters. The photoluminescence and hysteresis loop characteristics are found to be dependent on calcination conditions, and implicate the role of oxygen vacancies. Existence of higher oxygen vacancies in V-doped TiO2(B) nanotubes synthesized in argon than the air atmosphere is supported by the room-temperature photoluminescence spectra. The enhanced ferromagnetic behavior observed in V-doped TiO2(B) nanotubes synthesized in argon than the air atmosphere is explained in terms of bound magnetic polaron (BMP) model.  相似文献   

19.
Nanoparticulate TiO2 is of interest for a variety of technological applications, including optically transparent UV-filters and photocatalysts for the destruction of chemical waste. The successful use of nanoparticulate TiO2 in such applications requires an understanding of how the synthesis conditions effect the optical and photocatalytic properties. In this study, we have investigated the effect of heat treatment temperature on the properties of nanoparticulate TiO2 powders that were synthesised by solid-state chemical reaction of anhydrous TiOSO4 with Na2CO3. It was found that the photocatalytic activity increased with the heat treatment temperature up to a maximum at 600 °C and thereafter declined. In contrast, the optical transparency decreased monotonically with the heat treatment temperature. These results indicate that solid-state chemical reaction can be used to prepare powders of nanoparticulate TiO2 with properties that are optimised for use as either optically transparent UV-filters or photocatalysts.  相似文献   

20.
FeNi alloy nanoparticles with controllable sizes were attached on the multiwalled carbon nanotubes by adjusting the atomic ratio of metal to carbon in the mixed solution of nitrate with Fe:Ni=1:1 (atomic ratio) via wet chemistry. Transmission electron microscopy (TEM) and high-resolution TEM indicated that quasi-spherical FeNi alloy nanoparticles with sizes in the range 12-25 nm are obtained. FeNi alloy composed of major face center cubic (fcc) and minor body center cubic (bcc) structures, which is proved by the X-ray powder diffraction (XRD). Magnetization measured by vibrating sample magnetometer demonstrated that both the coercive force and saturation magnetizations decrease as the size of the FeNi alloy nanoparticles decreased. The chemical method is promising for fabricating FeNi alloy nanoparticles attached on carbon nanotubes for magnetic storage and ultra high-density magnetic recording applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号