首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fine powders of NiCuZn ferrite with composition Ni(0.7−x)CuxZn0.3Fe2O4 (where x=0, 0.2, 0.4 and 0.6) were prepared by the citrate precursor method. X-ray diffraction measurements confirm the formation of single-phase cubic spinel structure. The grain size was estimated by SEM micrograph which increases with Cu content. Dielectric constant (?) and loss tangent (tan δ) were measured as a function of frequency. The ? and tan δ show a decreasing trend with increase of frequency for all the samples. The DC resistivity was measured as a function of temperature. The temperature-dependent DC resistivity measurements show that the room-temperature DC resistivity of NiCuZn ferrite with x=0.2 is of the order of 109 Ω cm. The AC conductivity (σAC) was studied as a function of frequency. The hysteresis data indicate that the maximum saturation magnetization of 38.66 emu/g is obtained for the composition with x=0.2.  相似文献   

2.
Nanosized zinc oxide has been synthesized through a novel single step solution combustion route using citric acid as fuel. The X-ray diffraction (XRD) analysis revealed that the synthesized ZnO nanopowder has the pure wurtzite structure. The phase purity of the nanopowder has been confirmed using differential thermal analysis (DTA), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR). The morphology and crystalline size of the as-prepared nanopowder characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that the powder consisted of a mixture of nanoparticles and nanorods. The nanocrystalline ZnO could be sintered to ∼97% of the theoretical density at 1200 °C in 4 h. The dielectric constant (εr) and dielectric loss (εi) of sintered ZnO pellets at 5 MHz were 1.38 and 9×10−2, respectively, at room temperature.  相似文献   

3.
In this work, we report the magnetic properties of isotropic M-type SrFe12−xAlxO19 (x=0.0,1.5) hexaferrites synthesized by means of Pechini method. A polycrystalline distribution of fine grains was verified by Transmission Electron Microscopy for both compositions, with average sizes below 60 nm. Remarkable coercivity values within the range 500–850 kA/m were attained as a consequence of a combined effect of grain size refinement together with an enhancement of the anisotropy field afforded by the incorporation of the Al3+ cations into the hexagonal crystal structure.  相似文献   

4.
The sintering behavior, microstructures, and microwave dielectric properties of Ca2Zn4Ti15O36 ceramics with B2O3 addition were investigated. The crystalline phases and microstructures of Ca2Zn4Ti15O36 ceramics with 0-10 wt% B2O3 addition were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The sintering temperature of Ca2Zn4Ti15O36 ceramic was lowered from 1170 to 930 °C by 10 wt% B2O3 addition. Ca2Zn4Ti15O36 ceramics with 8 wt% B2O3 addition sintered at 990 °C for 2 h exhibited good microwave dielectric properties, i.e., a quality factor (Qf) 11,400 GHz, a relative dielectric constant (εr) 41.5, and a temperature coefficient of resonant frequency (τf) 94.4 ppm/°C.  相似文献   

5.
In the present work, mixed magnesium-manganese ferrites of composition Mg0.9Mn0.1Al0.3CozFe1.7−zO4 where z=0.3, 0.5 and 0.7 have been synthesized by the citrate precursor technique. X-ray diffraction patterns of the samples confirmed the formation of single-phase spinel structure. The ferrites have been investigated for their electric and magnetic properties such as dc resistivity, Curie temperature, saturation magnetization, initial permeability and relative loss factor (RLF). Fairly constant value of initial permeability over a wide frequency range (0.1-20 MHz) and low values of the relative loss factor of the order of 10−4-10−5, in the frequency range 0.1-30 MHz, are the cardinal achievements of the present investigation. In addition to this, initial permeability was found to increase with an increase in temperature while RLF was observed to be low at these temperatures. The dc resistivity and Curie temperature were found to increase with an increase in cobalt content. The mechanisms contributing to these results are discussed in detail in this paper.  相似文献   

6.
Preparing M-type barium hexaferrite and improving the magnetic response of natural ferrites by incorporating barium carbonate (BaCO3) is ever-demanding. Series of barium carbonate doped ferrites with composition (100−x)Fe3O4·xBaCO3 (x=0, 10, 20, 30 wt%) are prepared through solid state reaction method and sintered gradually at temperatures of 800 and 1000 °C. Nanoparticles of natural ferrite and commercial BaCO3 are used as raw materials. Impacts of BaCO3 on structural and magnetic properties of these synthesized ferrites are inspected. The obtained ferrites are characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) at room temperature. Uniform barium hexaferrite particles in terms of both morphology and size are not achieved. The average crystallite size of BaFe12O19 is observed to be within 30–600 nm. The sintering process results phase transformation from Fe3O4 (magnetite) to α-Fe2O3 (hematite) and the formation of hexagonal barium ferrite crystals. The occurrence of barium crystal is found to enhance with the increase of BaCO3 concentrations up to 20 wt% and suddenly drop at 30 wt%. Saturation and remanent magnetization of the doped ferrites are significantly augmented up to 16.37 and 8.92 emu g−1, respectively compared to their pure counterpart. Furthermore, the coercivity field is slightly decreased as BaCO3 concentrations are increased. BaCO3 mediated improvements in the magnetic response of natural ferrites are demonstrated.  相似文献   

7.
8.
Polycrystalline ceramic samples of Bi4−xLaxTi3O12 (x=0.0, 0.5 and 1) and Bi3.5La0.5Ti3−yNbyO12 (y=0.02 and 0.04) have been synthesized by standard high temperature solid state reaction method using high purity oxides and carbonates. The effect of lanthanum doping on Bi-site and Nb doping on Ti-site on the structural and electrical properties of Bi4Ti3O12 powders was investigated by X-ray diffraction, scanning electron microscopy, dc conductivity and dielectric studies. A better agreement between the observed and calculated X-ray diffraction pattern was obtained by performing the Rietveld refinement with a structural model using the non-centrosymmetric space group Fmmm in all the cases. A better agreement between observed and calculated d-values also shows that the lattice parameters calculated using the Rietveld refinement analysis are better. The increase in lanthanum and niobium contents does not lead to any secondary phases. It is found that La3+ doping reduces the material grain size and changes its morphology from the plate-like form to a spherical staking like form. The substitution of Nb for Ti ions affected the degree of disorder and modified the dielectric properties leading to more resistive ceramic compounds. The shape and size of the grains are strongly influenced by the addition of niobium to the system. The activation energies of all the compounds were calculated by measuring their dc electrical conductivities. The frequency and temperature dependent dielectric behavior of all the compounds have also been studied and the results are discussed in detail. The substitution of La and Nb on the Bi and Ti sites decreased the Tc and improved the dielectric and ferroelectric behavior.  相似文献   

9.
Room temperature multiferroic electroceramics of Gd doped BiFeO3 monophasic materials have been synthesized adopting a slow step sintering schedule. Incorporation of Gd nucleates the development of orthorhombic grain growth habit without the appearance of any significant impurity phases with respect to original rhombohedral (R3c) phase of un-doped BiFeO3. It is observed that, the materials showed room temperature enhanced electric polarization as well as ferromagnetism when rare earth ions like Gd doping is critically optimized (x=0.15) in the composition formula of Bi1+2xGd2x/2Fe1−2xO3. We believe that magnetic moment of Gd+3 ions in Gd doped BiFeO3 tends to align in the same direction with respect to ferromagnetic component associated with the iron sub lattice. The dielectric constant as well as loss factor shows strong dispersion at lower frequencies and the value of leakage current is greatly suppressed with the increase in concentration of x in the above composition. Addition of excess bismuth and Gd (x=0.1 and 0.15) caused structural transformation as well as compensated bismuth loss during high temperature sintering. Doping of Gd in BiFeO3 also suppresses spiral spin modulation structure, which can change Fe-O-Fe bond angle or spin order resulting in enhanced ferromagnetic property.  相似文献   

10.
In this paper we report the structural, magnetic, magnetocapacitance and dielectric properties of BiFe1−xNixO3 nanoceramics (with x=0, 0.1) prepared by the sol-gel method. XRD analysis showed formation of single phase nanoceramics (particle size ∼50 nm by TEM). Samples of BiFe1−xNixO3 were divided into two parts—one of them quenched in liquid nitrogen and another sintered in the normal way. We observed the enhancement in magnetic and dielectric properties of quenched sample. The splitting of zero field cool (ZFC) and field cool (FC) magnetization curves at low temperature reveals spin- glass behavior. Quenched sample showed the enhancement of blocking temperature.  相似文献   

11.
The effect of variations of the Zr:Sn ratio on the microstructure and electric properties of lead lanthanum zirconate stannate titanate (PLZST) antiferroelectric ceramics were investigated. The precursor powders were synthesized by the modified coprecipitation method and all the samples were pure perovskite phase in the XRD patterns. The ceramics sintered at 1100 °C exhibited the highest relative density. With the increasing of Sn4+ content, the grain size of the ceramics was decreased in the SEM and the maximum dielectric constant and the corresponding temperature were decreased. The P-E hysteresis loops indicated that it is helpful to steady the antiferroelectric phase by increasing Sn4+ content.  相似文献   

12.
Nano-crystallites of Li1.3Ti1.7Al0.3(PO4)2.9(VO4)0.1 NASICON type material are prepared by means of solid-state reaction of a stoichiometric mixture after milling it for 22 and 55 h. The milling reduces the average crystallite size of the ceramic to 80 and 60 nm, respectively. Mechanical milling changes structural parameters and the strain induced at the grain-boundaries plays a major role in improving electrical conductivity. An order of magnitude increase in electrical conductivity is observed in the material milled for 55 h compared to the unmilled material, which is also reflected in permittivity loss. Modulus and permittivity representations substantiate the constriction effect of grain-boundaries observed in the complex impedance representation.  相似文献   

13.
Lanthanum based mixed valence manganite system La1−xCax−0.08Sr0.04Ba0.04MnO3 (LCSBMO; x=0.15, 0.24 and 0.33) synthesized through the sol-gel route is systematically investigated in this paper. The electronic transport and magnetic susceptibility properties are analyzed and compared, apart from the study of unit cell structure, microstructure and composition. Second order phase transition is observed in all the samples and significant difference is observed between the insulator to metal transition temperature (TMI) and paramagnetic (PM) to ferromagnetic (FM) transition temperature (TC). In contrast to the insulating FM behaviour usually observed in La1−xCaxMnO3 (LCMO) for x=0.15, a clear insulator to metal transition is observed for LCSBMO for the same percentage of lanthanum. The temperature dependent resistivity of polycrystalline pellets, when obeying the well studied law ρ=ρo+ρ2T2 for T<TMI, is observed to differ significantly in the values of ρo and ρ2, with the electrical conductivity increasing with x. The variable range hopping model has been found to fit resistivity data better than the small polaron model for T>TMI. AC magnetic susceptibility study of the polycrystalline powders of the manganite system shows the highest PM to FM transition of 285 K for x=0.33.  相似文献   

14.
In the present study we have synthesized CdS semiconducting quantum dots by the chemical precipitation method using Thioglycerol as the capping agent. X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) are employed to characterize the size, morphology and crystalline structure of the as-prepared material. The synthesized QPs have a mixture of cubical and hexagonal crystal symmetry with 12 nm average diameter. Ultraviolet-visible (UV-vis) absorption spectroscopy is used to calculate the band gap of the material and blue shift in absorption edge. Confinement of the optical phonon modes in the QPs is studied by Raman spectroscopy, while FTIR for identification of chemical bonds in the nanomaterial. Multiple cadmium and sulphur defects were observed by employing the photoluminescence (PL) method.  相似文献   

15.
A polycrystalline sample, KCa2V5O15, with tungsten bronze structure was prepared by a mixed-oxide method at low temperature (i.e., at 630 °C). A preliminary structural analysis of the compound showed an orthorhombic crystal structure at room temperature. Surface morphology of the compound was studied by scanning electron microscopy (SEM). Two dielectric anomalies at 131 and 275 °C were observed in the temperature dependency of dielectric response at various frequencies, which may be attributed to the ferroelastic-ferroelectric and ferroelectric-paraelectric transitions, respectively. The nature of variation of the electrical conductivity, and value of activation energy of different temperature regions, suggest that the conduction process is of mixed-type (i.e., ionic-polaronic and space charge generated from the oxygen ion vacancies). The impedance plots showed only bulk contributions, and non-Debye type of relaxation process occurs in the material. A hopping mechanism of electrical transport processes in the system is evident from the modulus analysis. The activation energy of the compound (calculated both from loss and modulus spectrum) is same, and hence the relaxation process may be attributed to the same type of charge carriers.  相似文献   

16.
A systematic study of magnetoelectric composite system (x) CoFe2O4+(1−x) Pb(Mg1/3Nb2/3)0.67Ti0.33O3 with x=0, 0.15, 0.30, 0.45 and 1 was carried out. The lattice strain was calculated using Williamson and Hall equation, which depends on the content of constituent phases in composites. The microstructure was studied using scanning electron microscopy. The ferroelectric transition temperature was independent of the content of individual phases, suggesting that the ferroelectric character is maintained in the composite. Observed PE and MH loops indicate that the multiferroic nature of magnetoelectric ceramics is dependent on the content of individual phases. The variation of magnetostriction with dc magnetic field was studied. The maximum magnetoelectric voltage coefficient of 7.2 mV/cm Oe is obtained for the synthesized composites. The magnetoelectric measurements are well explained with magnetostrictive behavior of the magnetic phase.  相似文献   

17.
A new oxide-ion conductor of Aurivillius-type structure, namely BISRVOX (Bi2SrxV1−xO5.5-(3x/2)-δ, 0≤x≤0.20), was successively synthesized by the microwave-assisted solid state reaction. 25 min of microwave irradiation was found to be quite sufficient to ensure the completion of reaction. Powder X-ray diffraction and differential thermal analysis showed better structural properties for the microwave-prepared samples compared to those obtained from the conventional solid synthesis route. Interestingly, the highly conducting γ-phase was effectively stabilized for x≥0.10. AC impedance spectroscopy evidenced the superiority of the microwave heating over conventional solid synthesis routes in exhibiting high oxide-ion performance.  相似文献   

18.
Polyaniline is chemically synthesised and doped with camphor sulphonic acid. FTIR studies carried out on these samples indicate that the aromatic rings are retained after polymerisation. The percentage of crystallinity for polyaniline doped with camphor sulphonic acid has been estimated from the X-ray diffraction studies and is around 56% with respect to polyaniline emeraldine base. The change in dielectric permittivity with respect to temperature and frequency is explained on the basis of interfacial polarisation. AC conductivity is evaluated from the observed dielectric permittivity. The values of AC and DC conductivity and activation energy are calculated. The activation energy values suggested that the hopping conduction is the prominent conduction mechanism in this system.  相似文献   

19.
Densification and magnetic properties of low-fire NiCuZn ferrites   总被引:1,自引:0,他引:1  
The mixing of (Ni0.38Cu0.12Zn0.50)Fe2O4 powders with Bi2O3 was performed using the solid-state mixing as well as wet chemical coating processes such as ammonia precipitation coating, urea precipitation coating, and solution coating. Ferrites prepared from the wet chemical coating processes could be densified at a lower sintering temperature without significant impact on the microstructural evolution compared with that prepared by solid-state mixing. In addition, samples prepared from the wet chemical coating process have a higher Br and Bs and a lower Hc compared with that from solid-state mixing. Considering both the effects of sintering temperature and sintered density (>95% T.D.), ferrites with 1.5 wt% Bi2O3 addition by ammonia precipitation coating sintered at 900°C can provide the best permeability and quality factor (191 and 68.2, respectively) among all the cases studied.  相似文献   

20.
This study reports the structural and magnetic properties of spinel systems Li4Mn5−xTixO12 (“4-5-12” series) and LiNi0.5Mn1.5−xTixO4 (“LNMTO” series), both based on Mn4+ substitution by Ti4+. Intermediate compositions covering the whole range of compositions (0≤x≤5 and 0≤x≤1.5, respectively) were prepared by solid state reaction. The 4-5-12 system forms a continuous spinel solid solution, whereas the spinel phase range in LNMTO stops before the end member “LiNi0.5Ti1.5O4”, which is multi-phased with a major hexagonal phase component. Cell parameters and (Mn,Ti)-O distances increase monotonically with titanium content in both series. In the LNMTO series, the end member LiNi0.5Mn1.5O4 is known to form a superstructure with Ni/Mn cation ordering. Neutron diffraction and Raman spectroscopy show that this order is lost when Ti is substituted, even at low level (x=0.15). The LNMTO crystal chemistry is also complicated by the presence of partial cation inversion, and the presence of a secondary rocksalt-type phase that modifies the spinel stoichiometry. Magnetic properties are characterized by a competition between ferromagnetic and antiferromagnetic interactions; no magnetic ordering is achieved, in agreement with B-site cation frustration and disorder. Electrochemical measurements show that the Ti3+/4+ and Mn3+/4+ redox couples behave independently in the 4-5-12 series, and that titanium decreases the high-potential electrochemical redox activity of LNMTO because of its blocking character for electron transfer to and from the nickel sites in the spinel structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号