首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Terrestrial tardigrade is known to show very strong anti-environmental character at a dehydrated state called “tun” state. It was reported to be alive after exposed to the hydrostatic pressure of 0.6 GPa, which was almost twice higher than the limit for most bacteria and multi-organisms. However, the limit of the hydrostatic pressure above which tardigrades cannot survive is unknown. We performed an experiment to put tardigrades into high hydrostatic pressure of 7.5 GPa, more than 10-times higher than investigated so far, and convinced that they can survive after exposure to 7.5 GPa for up to 12 h.  相似文献   

2.
The experiment on the search for life under very high pressure done on small animal, tardigrade, has been extended to the moss Ptychomitrium. Several spore placentas of the moss Ptychomitrium were sealed in a small Teflon capsule together with fluorinate as liquid pressure medium. The capsule was put in the center of a pyrophillite cube. This cube was compressed by six tungsten-carbide second-stage anvils with a front edge length of 4.0 mm. These anvils were compressed by a first stage, 250 ton press. It was proven that 80-90% of the spores were alive and germinated after being exposed to the maximum pressure of 7.5 GPa for up to 48 h. Furthermore, a relatively high germination rate of about 35% was retained even after exposure to 7.5 GPa for 6 days. The pressure tolerance of moss is found to be much stronger than tardigrades.  相似文献   

3.
We measured the heat capacity of CeIrSi3 (100 mK<T<6 K) under high pressure up to P=1.38 GPa. The measurements have been used a quasiadiabatic method utilizing a CuBe piston-cylinder pressure cell in a dilution refrigerator. At 0 GPa, a sharp anomaly which indicates the antiferromagnetically transition is observed at TN=5 K. TN decreases monotonically with increasing pressure up to P=1.38 GPa. The magnetic entropy is released below TN only 19% of R ln 2 at 0 GPa. And the magnetic entropy decreases with increasing pressure up to 1.38 GPa, 64% compared to that at 0 GPa.  相似文献   

4.
The phase transformations of titanium metal have been studied at temperatures and pressures up to 973 K and 8.7 GPa using synchrotron X-ray diffraction. The equilibrium phase boundary of the α-ω transition has a dT/dP slope of 345 K/GPa, and the transition pressure at room temperature is located at 5.7 GPa. The volume change across the α-ω transition is ΔV=0.197 cm3/mol, and the associated entropy change is ΔS=0.57 J/mol K. Except for ΔV, our results differ substantially from those of previous studies based on an equilibrium transition pressure of 2.0 GPa at room temperature. The α-ω-β triple point is estimated to be at 7.5 GPa and 913 K, which is comparable with previous results obtained from differential thermal analysis and resistometric measurements. An update, more accurate phase diagram is established for Ti metal based on the present observations and previous constraints on the α-β and ω-β phase boundaries.  相似文献   

5.
Recent reports of the melting curve of sodium at high pressure have shown that it has a very steep descent after a maximum of around 1000 K at 31 GPa. This maximum does not occur due to a solid-solid phase transition. According to the Lindemann criterion, this behaviour should be apparent in the evolution of the Debye temperature with pressure. In this work, we have performed an “ab initio” analysis of the behaviour of both the Debye temperature and the elastic constants up to 102 GPa, and find a clear trend at high pressure that should cause a noticeable effect on the melting curve.  相似文献   

6.
In situ high-pressure angle dispersive synchrotron X-ray diffraction studies of molybdenum diselenide (MoSe2) were carried out in a diamond-anvil cell to 35.9 GPa. No evidence of a phase transformation was observed in the pressure range. By fitting the pressure-volume data to the third-order Birch-Murnaghan equation of state, the bulk modulus, K0T, was determined to be 45.7±0.3 GPa with its pressure derivative, K0T, being 11.6±0.1. It was found that the c-axis decreased linearly with pressure at a slope of −0.1593 when pressures were lower than 10 GPa. It showed different linear decrease with the slope of a −0.0236 at pressures higher than 10 GPa.  相似文献   

7.
It was shown in our previous reports that a few spores of moss Venturiella could tolerate the very high pressure of 20 GPa for 30 min and germinated a protonema to the length of 30 μm. However, these spores did not grow any further, and disappeared at around 30 days of incubation after seeded. On the other hand, colonies of blue-green alga Microcystis flos-aquae came to appear about 76 days after the moss spores were seeded. Many of these colonies appeared at the places where the moss spores had disappeared. These colonies were formed by the algae that had adhered to the spore cases of the moss and survived after exposure to the very high pressure of 20 GPa. Though the appearance of the colonies of high pressure exposed algae was delayed by about 50 days compared with that of the control group which was not exposed to high pressure, there seems no difference in their shape and color from those of the control group. The pressure tolerance of blue-green alga is found to be enormously strong, and it can survive after exposure to the high pressure which corresponds to the depth of about 550–600 km from the surface of the Earth, just above the lower mantle.  相似文献   

8.
We report the influence of external high-pressure (P up to 8 GPa) on the temperature (T) dependence of electrical resistivity (ρ) of a Yb-based Kondo lattice, YbPd2Si2, which does not undergo magnetic ordering under ambient pressure condition. There are qualitative changes in the ρ(T) behavior due to the application of external pressure. While ρ is found to vary quadratically below 15 K (down to 45 mK) characteristic of Fermi-liquids, a drop is observed below 0.5 K for P=1 GPa, signaling the onset of magnetic ordering of Yb ions with the application of P. The T at which this fall occurs goes through a peak as a function of P (8 K for P=2 GPa and about 5 K at high pressures), mimicking Doniach's magnetic phase diagram. We infer that this compound is one of the very few Yb-based stoichiometric materials, in which one can traverse from valence fluctuation to magnetic ordering by the application of external pressure.  相似文献   

9.
We have investigated the pressure variation of the volume and structure of an FCC Fe64Mn36 anti-ferromagnetic Invar alloy. The inclination of the pressure-volume (P-V) curve of the FCC structure becomes discontinuous at a pressure of 4 GPa. According to the bulk modulus at zero pressure estimated by the Birch-Murnaghan equation of state, the pressure between 4 and 10 GPa is 33 GPa larger than that at a pressure below 4 GPa. Considering previous experiments on magnetism at high pressure the Neel temperature at 4 GPa almost decreases to room temperature. These results suggest that the increase in the bulk modulus by 33 GPa can be attributed to the pressure-induced magnetic phase transition from anti-ferromagnetism to paramagnetism. Volume at zero pressure was estimated using the Birch-Murnaghan equation of state. The volume of FCC structure in the anti-ferromagnetic state was 1.17% larger than the volume in the paramagnetic state, namely, the spontaneous magnetostriction was 1.17%. Pressure-induced structural transition from FCC to HCP occurs with an increase in the pressure, especially at up to 5 GPa. The value of c/a is 1.62; this value almost corresponds to that of an ideal HCP structure. The bulk modulus of the HCP structure estimated by the Birch-Murnaghan equation of state is larger than that of the FCC structure, and the volume/atom ratio is smaller than that of the FCC structure.  相似文献   

10.
The effect of hydrostatic pressure (up to 0.82 GPa) on the electric properties of chain TlGaTe2 single crystals has been investigated in the temperature range 77-296 K. It has been shown that pressure leads to a considerable increase of conductivity (σ) across the chains of TlGaTe2 single crystals. Parameters of localized states in the band gap of TlGaTe2 single crystal according to the low-temperature electrical measurements were obtained at various pressures.  相似文献   

11.
Photoluminescence spectra of Sm2+-doped BaBr2 have been measured under hydrostatic pressures up to 17 GPa at room temperature. In the low pressure range a red-shift of the broad 5d-4f transition of −145 cm−1/GPa is observed. From 5 to 8 GPa a phase mixture of the initial orthorhombic phase and the high-pressure monoclinic phase gives rise to two 5d-4f bands, which are strongly overlapping. Above 8 GPa the crystal is completely transformed to its high-pressure phase where two different Sm2+ sites exist, but only one broad 5d-4f transition is detected. It exhibits a red-shift of −36 cm−1/GPa. In addition, the line shifts of the 5D07FJ (J=0, 1, 2) transitions are investigated. Linear shifts of −19 cm−1/GPa for J=0, 2 and of −13 cm−1/GPa for J=1 are observed in the pressure range from 0 to 5 GPa.  相似文献   

12.
We investigated the behavior of the structure of titanium hydride (TiH2), an important compound in hydrogen storage research, at elevated temperatures (0-120 °C) and high pressures (1 bar-34 GPa). Temperature-induced changes of TiH2 as indicated in the alteration of the ambient X-ray demonstrated a cubic to tetragonal phase transition occurring at about 17 °C. The main focus of this study was to identify any pressure-induced structural transformations, including possible phase transitions, in TiH2. Synchrotron X-ray diffraction studies were carried out in situ (diamond anvil cell) in a compression sequence up to 34 GPa and in subsequent decompression to ambient pressure. The pressure evolution of the diffraction patterns revealed a cubic (Fm-3m) to tetragonal (I4/mmm) phase transition at 2.2 GPa. The high-pressure phase persisted up to 34 GPa. After decompression to ambient conditions the observed phase transition was completely reversible. A Birch-Murnaghan fit of the unit cell volume as a function of pressure yielded a zero-pressure bulk modulus K0=146(14) GPa, and its pressure derivative K0=6(1) for the high-pressure tetragonal phase of TiH2.  相似文献   

13.
High pressure Raman scattering experiments have been performed for Rb8Sn442 in order to investigate the pressure induced phase transition. At pressures of 6.0 and 7.5 GPa, Raman spectrum was drastically changed, indicating the phase transitions. The irreversibility of the spectral change and the disappearance of Raman peak observed at 7.5 GPa strongly suggest the occurrence of irreversible amorphization.  相似文献   

14.
The pressure-volume-temperature behavior of osmium was studied at pressures and temperatures up to 15 GPa and 1273 K. In situ measurements were conducted using energy-dispersive synchrotron X-ray diffraction in a T-cup 6-8 high pressure apparatus. A fit of room-temperature data by the third-order Birch-Murnaghan equation-of-state yielded isothermal bulk modulus K0=435(19) GPa and its pressure derivative K0=3.5(0.8) GPa. High-temperature data were analyzed using Birch-Murnaghan equation of state and thermal pressure approach. The temperature derivative of bulk modulus was found to be −0.061(9) GPa K−1. Significant anisotropy of osmium compressibility was observed.  相似文献   

15.
Optical properties of solid methane (CH4) were studied at high pressure and room temperature using a diamond anvil cell. Reflectivity and transmission measurements were used to measure the refractive index to 288 GPa. Fabry-Perot interferometery was used to measure the sample thickness to 172 GPa. This data was fitted to the derived expression of thickness vs. pressure that was then used to calculate the thickness to 288 GPa. This in turn was combined with optical absorption experiments to obtain the absorption coefficient and hence the extinction coefficient k*. From combined reflection and absorption experiments the refractive index n=ns+ik* was obtained. The index of refraction and the ratio of molar refraction to molar volume showed a large increase between 208 and 288 GPa. This behavior indicated that a phase transformation of insulator-semiconductor might have occurred in solid CH4 by 288 GPa.  相似文献   

16.
We present a synchrotron X-ray diffraction study of pressure-induced changes in nanocrystalline anatase (with a crystallite size of 30-40 nm) to 35 GPa. The nanoanatase was observed to a pressure above 20 GPa. Direct transformation to the baddeleyite-TiO2 polymorph was seen at 18 GPa. A fit of the pressure versus volume data to a Birch-Murnaghan equation yielded the following parameters: zero-pressure volume, V0=136.15 Å3, bulk modulus, KT=243(3) GPa, and the pressure derivative of bulk modulus, K′=4 (fixed). The bulk modulus value obtained for the nanocrystalline anatase is about 35% larger than that of the macrocrystalline counterpart.  相似文献   

17.
The structure parameters and electronic structures of tungsten boride (WB) have been investigated by using the density functional theory (DFT). Our calculating results display the bulk modulus of WB are 352±2 GPa (K0=4.29) and 322±3 GPa (K0=4.21) by LDA and GGA methods, respectively. We have analyzed the probable reason of the discrepancy from the bulk modulus between theoretical and experimental results. The compression behavior of the unit cell axes is anisotropic, with the c-axis being more compressible than the a-axis. By analyzing the bond lengths information, it also demonstrated that WB has a lower compressibility at high pressure. From the partial densities of states (PDOS) of WB, we found that the Fermi lever is mostly contributed by the d states of W atom and p states of B atom and that the contributions from the s, p states of W atom and s states of B atom are small. Moreover, using the Gibbs 2 program, the thermodynamic properties of WB are obtained in a wide temperature range at high pressure for the first time in this work.  相似文献   

18.
The effect of hydrostatic pressure on the structures of HfN at 0 K was investigated by using the projector augmented wave (PAW) within the Perdew–Burke–Ernzerhof (PBE) form of the generalized gradient approximation (GGA). The transition pressure between NaCl (B1) and CsCl (B2) structures is predicted to be 277.3 GPa. This value is consistent with that reported by Kroll, while in contrast to the results obtained by Ojha et al. and Meenaatci et al. Moreover, the elastic properties of B1-HfN and B2-HfN under high pressures are successfully obtained. It is found that the elastic constants, bulk modulus B, shear modulus G, compressional and shear wave velocities increase monotonically with increasing pressure. The Debye temperature Θ calculated from the elastic constants of HfN is in good agreement with the experimental values. The anisotropies of B1-HfN and B2-HfN at zero pressure have also been discussed.  相似文献   

19.
20.
The mechanism of phase transition and evolution in graphite under uniform compression and spherical nanoindentation along the c-direction is investigated through systematical molecular dynamics simulations. Under both the loading conditions, the soft graphite phase can sustain pressure up to 16-20 GPa, beyond which it transforms into a new phase characterized by a much higher stiffness. More and more interlayer bonds will be created in the new hard phase with the increase of the pressure until an unstable state is reached. The critical pressure to produce the quenchable hard phase with a permanent sp3 bonding remaining after unloading is shown to be as high as ∼880 GPa under uniform compression, as opposed to only ∼75 GPa under nanoindentation. Therefore, application of non-uniform pressure is significantly more helpful for creating diamond-like sp3 structures in graphite by cold-compressive technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号