首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of high-pressure angle dispersive X-ray diffraction measurements up to 34.3 GPa on the double perovskite Ba2MgWO6 are presented. The ambient rock salt phase (SG: Fm-3m) is found to be stable up to the highest pressure of the present measurements. The third order Birch-Murnaghan equation of state when fitted to pressure-volume data, yielded a zero pressure bulk modulus (B0),and its first and second pressure derivatives as 137.0(81) GPa, and 3.9(5) and −0.03 GPa−1, respectively.  相似文献   

2.
The experimental and analytical method of the high-pressure powder experiment at BL10XU, SPring-8, is described. There is no doubt that BL10XU must be one of the most appropriate beam lines for high pressure X-ray diffraction experiment taking advantage of third generation synchrotron source. As an example of the advanced charge density study under high pressure, the structural change of Cs2Au2Br6 by applying pressure is studied by Rietveld/MEM analysis. It reveals that the structural change of Cs2Au2Br6 by applying pressure occurs basically at electron level, such as valence state change and chemical bonding, which may be called the electronic phase transition.  相似文献   

3.
The full-potential linear muffin-tin orbital method (FP-LMTO) within the local density approximation (LDA) is used to calculate the electronic band structures and the total energies of MgTe in its stable (NiAs-B8) and high pressure phases. The latter provide us with the ground state properties such us lattice parameter, bulk modulus and its pressure derivatives. The transition pressure at which this compound undergoes the structural phase transition from the NiAs to CsCl phase is calculated. The energy band gaps and their volume and pressure dependence in the stable NiAs-B8 phase are investigated. The ground state properties, the transition pressure are found to agree with the experimental and other theoretical results. The elastic constants at equilibrium in both NiAs and CsCl structure are also determined.  相似文献   

4.
We report total energy and electronic structure calculations for lanthanum monochalcogenides in B1 (NaCl) and B2 (CsCl) crystal structures over a range of unit cell volumes. We employed the tight binding linear muffin-tin orbital approach to density functional theory within the local density approximation to expand the crystal orbitals and periodic electron density. In agreement with the experiment we find that B1 phase is lower in energy than B2 phase, and that the compounds transforms to B2 structure under applied pressure. This is the first qualitative prediction of the transition in La monochalcogenides and should be testable with diamond-anvil technique.  相似文献   

5.
The high-pressure behavior of rhenium disulfide (ReS2) has been investigated to 51.0 GPa by in situ synchrotron X-ray diffraction in a diamond anvil cell at room temperature. The results demonstrate that the ReS2 triclinic phase is stable up to 11.3 GPa, at which pressure the ReS2 transforms to a new high-pressure phase, which is tentatively identified with a hexagonal lattice in space group P6?m2. The high-pressure phase is stable up to the highest pressure in this study (51.0 GPa) and not quenchable upon decompression to ambient pressure. The compressibility of the triclinic phase exhibits anisotropy, meaning that it is more compressive along interlayer directions than intralayer directions, which demonstrates the properties of the weak interlayer van der Waals interactions and the strong intralayer covalent bonds. The largest change in the unit cell angles with increasing pressures is the increase of β, which indicates a rotation of the sulfur atoms around the rhenium atoms during the compression. Fitting the experimental data of the triclinic phase to the third-order Birch-Murnaghan EOS yields a bulk modulus of KOT=23±4 GPa with its pressure derivative KOT′= 29±8, and the second-order yields KOT=49±3 GPa.  相似文献   

6.
The electronic and structural properties of chalcopyrite compounds CuAlX2 (X=S, Se, Te) have been studied using the first principle self-consistent Tight Binding Linear Muffin-Tin Orbital (TBLMTO) method within the local density approximation. The present study deals with the ground state properties, structural phase transition, equations of state and pressure dependence of band gap of CuAlX2 (S, Se, Te) compounds.Electronic structure and hence total energies of these compounds have been computed as a function of reduced volume. The calculated lattice parameters are in good agreement with the available experimental results. At high pressures, structural phase transition from bct structure (chalcopyrite) to cubic structure (rock salt) is observed. The pressure induced structural phase transitions for CuAlS2, CuAlSe2, and CuAlTe2 are observed at 18.01, 14.4 and 8.29 GPa, respectively. Band structures at normal as well as for high-pressure phases have been calculated. The energy band gaps for the above compounds have been calculated as a function of pressure, which indicates the metallic character of these compounds at high-pressure fcc phase. There is a large downshift in band gaps due to hybridatization of the noble-metal d levels with p levels of the other atoms.  相似文献   

7.
An equation of state (EOS) recently proposed for nanomaterials is discussed critically. Different possible forms of the EOS are discussed with their correlations. We have considered 20 nanomaterials for this purpose, viz. CdSe, Rb3C60, carbon nanotube, γ-Fe2O3, ε-Fe (hexagonal iron), MgO, γ-Al2O3 (67 nm), α-Fe2O3, α-Fe (filled nanotube), TiO2 (anatase ), 3C-SiC (30 nm), TiO2 (rutile phase), Zr0.1Ti0.9O2, γ-Si3N4, Ni-filled MWCNT, Fe-filled MWCNT, CeO2 (cubic fluorite phase and orthorhombic phase), germanium (49 nm), GaN (wurtzite phase) and SnO2 (rutile phase) (14 nm). It is found that the change in the form of EOS does not improve the results. This demonstrates the validity of the EOS proposed for nanomaterials. The EOS is also used to study the effect of temperature on compression of Ni (20 nm). It is found that there is small shift in isotherm due to increase in the temperature. The results have been found to present a good agreement with the available experimental data.  相似文献   

8.
The high pressure properties of icosahedral boron arsenide (B12As2) were studied by in situ X-ray diffraction measurements at pressures up to 25.5 GPa at room temperature. B12As2 retains its rhombohedral structure; no phase transition was observed in the pressure range. The bulk modulus was determined to be 216 GPa with the pressure derivative 2.2. Anisotropy was observed in the compressibility of B12As2c-axis was 16.2% more compressible than a-axis. The boron icosahedron plays a dominant role in the compressibility of boron-rich compounds.  相似文献   

9.
High-pressure phase transition of Ta2NiO6 with the trirutile-type structure was investigated from the viewpoint of crystal chemistry. A new quenchable high-pressure phase was found in the pressure range higher than 7 GPa and 900°C. The high-pressure phase has an orthorhombic cell (a=4.797(1) Å, b=5.153(2) Å and c=14.85(1) Å and space group; Abm2), and it is more dense by 9.6% than the trirutile-structured phase. Infrared spectra of the trirutile-type phase and the high-pressure phase show that Ni2+ ions in the high-pressure phase are still in octahedral sites. The crystal structure of the high-pressure phase is considered as a cation-ordering trifluorite-type structure, which can be stabilized by a crystal field effect of Ni2+ ions.  相似文献   

10.
11.
The in situ high P-T X-ray diffraction experiments were conducted at pressures up to 17 GPa and temperatures up to 1273 K to study the phase transformations and equations of state for two grades of zirconium metals. At ambient temperature, our results reveal significant differences in both the transition pressure and kinetics of the α-ω phase transformation between the ultra-pure Zr (35 ppm Hf and <50 ppm O) and impure Zr (1.03 at% Hf and 4.5 at% O). These observations indicate that impurities, particularly oxygen ions, play important roles in the transformation mechanisms as well as crystal stability. On the other hand, impurities have no measurable effects on either the elastic bulk moduli of both α and ω phases or the volume change across the α-ω phase transformation. At elevated temperature, both impure and ultra-pure Zr show similar transition temperatures for the ω-β phase boundary over a pressure range of 6-16 GPa, suggesting that impure oxygen and hafnium ions can only be an α-Zr stabilizer; they do not seem to significantly increase the stability of the ω-Zr relative to the β-Zr.  相似文献   

12.
The pressure-volume-temperature behavior of osmium was studied at pressures and temperatures up to 15 GPa and 1273 K. In situ measurements were conducted using energy-dispersive synchrotron X-ray diffraction in a T-cup 6-8 high pressure apparatus. A fit of room-temperature data by the third-order Birch-Murnaghan equation-of-state yielded isothermal bulk modulus K0=435(19) GPa and its pressure derivative K0=3.5(0.8) GPa. High-temperature data were analyzed using Birch-Murnaghan equation of state and thermal pressure approach. The temperature derivative of bulk modulus was found to be −0.061(9) GPa K−1. Significant anisotropy of osmium compressibility was observed.  相似文献   

13.
The crystal structure of Na0.75CoO2 was studied at ambient and low temperatures down to 10 K at pressures up to 40 GPa using synchrotron x-rays and a diamond cell in angle dispersion geometry. A reduction in the c/a ratio was observed at both conditions with the application of pressure. An increase in Co–O bond lengths and a decrease in Na–O bond lengths were observed above 10 GPa. The results of the density functional calculations performed agree well with the pressure induced bond length changes. The anomalous change in the c/a ratio and bond lengths indicate a pressure induced isostructural phase transition above 10 GPa. Bulk modulus calculations show this compound is less compressible than its hydrated analogues.  相似文献   

14.
We present a technique for high pressure and high temperature deformation experiment on single crystals, using the Deformation-DIA apparatus at the X17B2 beamline of the NSLS. While deformation experiments on polycrystalline samples using D-DIA in conjunction with synchrotrons have been previously reported, this technical paper focuses on single crystal application of the technique. Our single crystals are specifically oriented such that only [1 0 0] slip or [0 0 1] slip in (0 1 0) plane is allowed. Constant applied stress (sigma <300 MPa) and specimen strain rates were monitored using in situ time-resolved X-ray diffraction and radiography imaging, respectively. Rheological properties of each activated slip system in the crystals can be revealed using this technique. In this paper, we describe the principle of sample preparation (e.g. [1 1 0]c and [0 1 1]c orientations) to activate specific slip systems (i.e. [1 0 0](0 1 0) and [0 0 1](0 1 0), respectively), stress measurement and procedures of the deformation experiments.  相似文献   

15.
高密度氩气的原子间相互作用与状态方程   总被引:5,自引:4,他引:1  
本文从高密度气体的原子间相互作用出发进行思考,在修改范德瓦耳方程的基础上,提出了一种新的适用于高密度气体的状态方程,并用以对氩气临界区的等温压缩线进行计算,结果与实验值很符合.  相似文献   

16.
Electrical conduction and crystal structure of Al2(WO4)3 at 400 °C have been studied as a function of pressure up to 5.5 GPa using impedance methods and synchrotron radiation X-ray diffraction, respectively. AC impedance spectroscopy and DC polarization measurements reveal an ionic to electronic dominant transition in electrical conductivity at a pressure as low as 0.9 GPa. Conductivity increases with pressure and reaches a maximum at 4.0 GPa, where the conductivity value is 5 orders of magnitude greater than the 1 atm value. Upon decompression, the conductivity retains the maximum value until the sample is cooled at 0.5 GPa. The high pressure-temperature X-ray diffraction results show that the lattice parameters decrease as pressure increases and the crystal structure undergoes an orthorhombic to tetragonal-like transformation at a pressure ∼3.0 GPa. The change of conduction mechanism from ionic to electronic may be explained by means of pressure-induced valence change of W6+→W5+, which results in electron transfer between W5+-W6+ sites at high pressure.  相似文献   

17.
High resolution X-ray powder diffraction studies have shown SrRhO3 to transform from an orthorhombic Pnma structure at room temperature through an intermediate Imma phase to a tetragonal I4/mcm structure near 800 °C. The orthorhombic Imma phase exists over a very limited temperature range, of less than 20°. The diffraction data suggests the Pnma to Imma transition is continuous and demonstrates that the Imma-I4/mcm transition is first order.  相似文献   

18.
Semi-empirical equations of state (EOS) are used for interpolation and extrapolation of experimental data and/or electronic structure calculations. For calculation of phase equilibria, it is preferable to use an explicit Gibbs free energy EOS, that is, to express the Gibbs free energy directly as a function of the pressure and temperature. Existing explicit Gibbs free energy EOS formulations often give unphysical predictions at high pressures. The origins of these problems are internal inconsistencies and uncontrolled extrapolations. A set of conditions is put forward, that should be fulfilled by semi-empirical EOS formulations in order to constrain them to known physical behaviour, e.g., to the Thomas-Fermi and quasi-harmonic models at high pressures. A new alternative integration path is devised that eliminates the need for the problematic extrapolation of the heat capacity to high temperatures at low pressures. Based on these developments, a new explicit Gibbs free energy EOS is formulated which is suitable for computational applications. The new EOS may be fitted to represent the thermophysical properties of solids with a reasonably small number of adjustable parameters. A sample application for MgO is presented.  相似文献   

19.
The electronic structure and hence the valence charge distribution of germanium at 296 and 200 K has been elucidated from structure factors measured by X-ray diffraction experiment using maximum entropy method (MEM) and multipole model. The methods adopted here are used to extract the fine details of the charge density distribution in the valence region. The charge density evaluated using both the models along the bond path and at the mid bond positions are compared and found to confirm the covalent bond existing in the solid. Topology of the charge density in the crystal is analysed and the critical points determined reveal unique spatial arrangement of valence charge in the direction normal to the bonding direction. The Laplacian of the charge density is also analysed for the understanding of the spatial distribution and the partitioning of the valence charge. The local charge concentration and the mapping of the electron pairs of the Lewis and valence shell electron pair repulsion (VSEPR) models have been done using electron localization function (ELF) and localized orbital locator (LOL).  相似文献   

20.
The Earth's deep interior is accessible only by indirect methods, first and foremost seismological studies. The interpretation of these seismic data and the corresponding numerical modelling require measurements of the elastic properties of representative Earth materials under experimental simulated in situ pressure-temperature conditions. Various experimental techniques for velocity measurements under crustal and mantle conditions and the results are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号