首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
l-Tyrosine (represented as l-Tyr) intercalated MgAl, NiAl and ZnAl layered double hydroxides (LDHs) have been obtained by the method of coprecipitation. In situ FT-IR, in situ HT-XRD and TG-DTA measurements allow a detailed understanding of the thermal decomposition process for the three intercalated composites. In situ HT-XRD reveals that the layered structure of l-Tyr/MgAl-LDH collapses completely at 450 °C with the first appearance of reflections of a cubic MgO phase, while the corresponding temperature for l-Tyr/NiAl-LDH is some 50 °C lower. In contrast, there is a major structural change in l-Tyr/ZnAl-LDH at 250 °C as shown by the disappearance of its (0 0 6) and (0 0 9) reflections at this temperature accompanied by the appearance of reflections of ZnO. In situ FT-IR experiments give information about the decomposition of the interlayer -Tyr ions. The decomposition temperature of l-Tyr in the ZnAl host is about 50 °C lower than the corresponding values for the MgAl and NiAl hosts. TG-DTA curves show a significant weight loss step (170-260 °C) in l-Tyr/ZnAl-LDH which is due to the dehydroxylation of the host layers, with a corresponding weak endothermic peak at 252 °C. This temperature range is much lower than that observed for MgAl and NiAl hosts, indicating that the ZnAl-LDH layers are relatively unstable. The data indicate that the order of thermal stability of the three intercalates is: l-Tyr/MgAl-LDH > l-Tyr/NiAl-LDH > l-Tyr/ZnAl-LDH.  相似文献   

2.
Precipitate calcium carbonates (PCCs) are important industrial products mainly used as fillers. Because of their regular, synthesized characteristics (e.g. grain shape or grain size distribution) PCCs are distinct from natural ground calcium carbonates (GCCs). A thermal study on GCC samples showed only the presence of surface physisorbed water with a monotonic weight loss up to the carbonate decomposition. In the case of PCC samples, two supplementary water releases were observed. The first one appeared at around 525 K and the second one at around 725 K. The nature of the water present in two different PCC samples was investigated by thermal analyses (thermogravimetric and Karl Fischer analyses), Rietveld analyses on X-rays powder diffraction, infrared and Raman spectroscopies and solid state 1H MAS NMR. The second water release at about 725 K was clearly identified as being portlandite dehydration. Ca(OH)2 was present in the PCC in an amorphous state. Its crystallization occurred simultaneously to the first water release at about 525 K. Structural effects observed on calcite during the first water release led to the assignment to structural water molecules inserted in the structure of calcite.  相似文献   

3.
Polyoxometalates (POMs) H2W12O406− and W4Nb2O194− have been intercalated between the brucite-like layers of Mg, Al and Zn, Al hydrotalcites by anion exchange, starting from the corresponding nitrate precursors. The solids have been characterised by Powder X-ray Diffraction (PXRD), Fourier Transform infrared (FT-IR) spectroscopy, N2 adsorption-desorption at −196 °C and thermogravimetric (TG) and differential thermal analyses (DTA), and have been tested in the epoxidation of cyclooctene using H2O2 or t-BuOOH as oxidants. The results show that both anions are effectively located in the interlayer space maintaining their pristine structures without depolymerisation. Upon intercalation of such large anions microporosity is developed and subsequently an increase in the specific surface areas is also observed. In general, the prepared materials possess catalase and epoxidation activity, with ZnAl-intercalated H2W12O406− giving the best results in terms of epoxide yield (17% at 24 h). Product selectivity is different for the intercalated and free POMs, the latter yielding 1,2-cyclooctanediol as the only product, whereas the former produces only the epoxide. The epoxidation reaction seems to be catalysed in homogeneous phase by the POM.  相似文献   

4.
Three zwitterionic surfactants, dodecyl dimethyl carboxylbetaine (DCB), dodecyl dimethyl sulfobetaine (DSB) and N-dodecyl-β-aminoprpionate (DAP), intercalated into NiZn-layered hydroxide salts (NZL-DCB, NZL-DSB and NZL-DAP) were synthesized by the coprecipitation method. The effect of surfactant content, pH, temperature and time of hydrothermal treatment on preparation was investigated and discussed. The NZL-DCB, NZL-DSB and NZL-DAP were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetry analysis and differential thermal analysis (TGA/DTA). The results showed that basal spacings of NZL-DCB, NZL-DSB and NZL-DAP were around 3.45, 3.68 and 3.94 nm, respectively. DCB, DSB and DAP probably form an overlapped bilayer in the gallery. TGA/DTA data indicated that NZL-DCB, NZL-DSB and NZL-DAP displayed three loss weight stages: loss of adsorbed and structural water, dehydroxylation of matrix and decomposition of nitrate ions, decomposition and combustion of surfactants. Furthermore, chemical analysis data, BET surface area and scanning electron microscopic (SEM) were also measured and analyzed.  相似文献   

5.
Mechanically alloyed aluminum-iodine composites with iodine concentrations from 4 to 17 wt% were prepared from elemental aluminum and iodine. A reference sample was prepared from aluminum and AlI3. A shaker mill and an attritor mill, operating at both room temperature and liquid nitrogen temperature, were used for preparation. Materials were characterized by electron microscopy and X-ray diffraction. The iodine release upon heating was studied using thermogravimetry. Mechanical alloying was found to be effective for preparation of Al-I composites that do not release iodine until the material is brought to high temperatures. Mechanical alloying in nitrogen gas at liquid nitrogen temperature was more effective in preparing stabilized Al-I composites than milling at room temperature. Iodine was not retained in materials milled directly in liquid nitrogen. In addition to poorly crystalline AlI3, other iodine compounds were present in the products. Assuming that the products are similar to other mechanically alloyed materials, it is expected that iodine is mixed with aluminum on the atomic scale, forming metastable Al-I compounds where iodine may be bonded to aluminum more strongly than in AlI3, explaining why their thermal decomposition and respective iodine release occur at higher temperatures compared to decomposition and boiling of AlI3.  相似文献   

6.
The solid state reaction method was used to synthesize single phase and near stoichiometric Cu2ZnSnSe4 compound from elemental Cu, Zn, Sn and Se powders in a quartz tube furnace under an Ar flow at atmospheric pressure. These elemental powders were initially milled using zirconia balls. The α-CuSe phase was present in all of the milled powders because of the mechanical alloying effect between the Cu and Se powders. The solid state reaction mechanism was examined for the synthesis process. The phase analysis suggested that the Cu2ZnSnSe4 powder crystallized into the stannite phase with a high degree of crystallinity after near stoichiometric molar ratios of the powders was reacted at 500 °C for 6 h. This study showed that the solid state reaction method was a straightforward technique for the synthesis of the Cu2ZnSnSe4 compound powders from the elemental powders.  相似文献   

7.
The thermal properties and thermal stability of diaspore-corundum (AlOOH-Al2O3), from Goian (Pontevedra, Spain) were studied by means of differential thermal analysis (DTA), thermogravimetry (TG), high temperature X-ray diffraction (HTXRD) and thermally stimulated luminescence (TL) techniques. The samples were annealed to link the combined effect of (i) dehydroxylation, (ii) oxidation-reduction of chromophores (Mn 0.5%, Fe2O3 0.12%, TiO2 0.021% and Cr 80 ppm) determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES) and (iii) phase transitions whilst sample heating (i.e. α-AlOOH→α′-Al2P3→α-Al2O3). The blue colour of diaspore, attributed to the Ti4+-Fe2+ intervalence-charge-transfer mechanism, turns to white (circa 500 °C) in good agreement with the DTA endothermic peak (dehydroxylation). The coexistence of α-AlOOH and α′-Al2P3 phases has been detected by in situ HTXRD and could be correlated to the thermoluminescence tests performed on preheated aliquots (up to 500 °C).  相似文献   

8.
Compounds LiNi1−xSbxO2 (x=0, 0.1, 0.15, 0.2, 0.25) were synthesized by the two-step calcination method. The structural and morphological properties of the products were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD analysis confirms that the uniform solid solution has been formed in the as-prepared compounds without any impurities. It is shown that the crystal lattice parameters (a, c) of the Sb-doped compounds are bigger than those of pure LiNiO2 and the Sb-doped compound with x=0.2 consists of spherical-like nanoparticles with a mean grain size of 50 nm. The electrochemical performances of as-prepared samples were studied via galvanostatic charge-discharge cycling tests. The compound with x=0.2 exhibits excellent capacity retention during the charge-discharge processes due to its reinforced structural stability, and a discharge capacity of 102.4 mAh/g is still obtained in the voltage range of 2.5-4.5 V after 20 cycles. Thermal analysis further confirms that the structural stability of LiNi0.8Sb0.2O2 is superior to that of pure LiNiO2.  相似文献   

9.
A red-emitting phosphor NaSrB5O9:Eu3+ was synthesized by employing a solid-state reaction (SSR) method. The structures of the phosphors were analyzed by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) and Raman studies. The band at ~282 nm in the excitation spectra indicated the charge transfer band (CTB) of B-O in the host, whereas the CTB of Eu-O was observed at ~275 nm for the NaSrB5O9:Eu3+ (Eu3+=1 at.%) phosphor, which was supported by diffuse reflectance spectroscopy (DRS) measurements. The photoluminescence (PL) measurements exhibited a strong red emission band centered at about 616 nm (5D07F2) under an excitation wavelength of 394 nm (7F05L6). Upon host excitation at 282 nm, the pristine NaSrB5O9 exhibited a broad UV emission centered at ~362 nm. The energy transfer from host to Eu3+ ions was confirmed from luminescence spectra, excited with a 355 nm Nd:YAG laser. In addition, the asymmetric ratios indicate a higher local symmetry around the Eu3+ ion in the host. The calculated CIE (Commission International de l′Eclairage) coordinates displayed excellent color purity efficiencies (around 99.7%) compared to other luminescent materials.  相似文献   

10.
Intercalation of cis-but-2-enedioate anion or trans-but-2-enedioate anion into the layered double hydroxide (LDH), [Mg0.66Al0.34(OH)2]Cl0.34·0.43H2O was carried out by the method of ion-exchange procedures. Selective reaction was observed in competitive experiments involving an equal concentration pairs of acids. The trans-but-2-enedioate anion is preferentially intercalated into the Mg-Al-LDH. The obtained intercalation compounds were characterized by X-ray diffraction, infrared and thermogravimetry techniques. The charge density on the oxygens of each of the carboxylate groups for both anions was investigated utilizing ab initio (HF/6-31G) method by G98w. From the X-ray diffraction data, the guest size and the charge density of the oxygen of the guest, the orientation of both anions between the layers was determined and the preferential intercalation mechanism was studied. These results indicate the possibility of a molecular recognition ability of LDHs.  相似文献   

11.
Layered double hydroxides (LDHs) are a class of artificially constructed materials that have potential applications in a wide range of fields, including biomedical research and drug development. In this study, we have successfully intercalated folic acid into LDH using two different approaches: co-precipitation and ion exchange. The resultant LDH-folic acid constructs were then characterized by powdered sample X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), thermogravimetry and differential thermal analysis (TG-DTA). XRD data demonstrated that folic acid molecules remained intact and stable between the hydroxide layers in LDH particles constructed by both co-precipitation and ion-exchange methods, with interlayer spacings of 15.3 and 16.0 Å, respectively. Particle size and surface topography were also determined using TEM. Cytotoxicity test revealed that neither LDH nor LDH-folic acid nanohybrids were toxic to the cell line 293T, suggesting that they can be used as a safe and noncytotoxic drug delivery system. Furthermore, the buffering effect of the intercalated LDH was evaluated. This work provides fundamental insights and technical details for utilizing biofunctional molecules that can form nanobiohybrid particles.  相似文献   

12.
The barium phenylarsonate compound, Ba(HO3AsC6H5)2·2H2O, has the ability to intercalate n-alkyldiamine molecules, H2N(CH2)nNH2 (n=2-5). The amount intercalated (nf) from a batchwise procedure and the variation of the original basal distance (d) of 1245 ppm determined through X-ray diffractions, gave linear correlations as a function of the number of carbon atoms in the aliphatic chain (nc): nf=(2.66±0.06)−(0.13±0.02)nc and d=(2168±65)+(114±14)nc. The intercalation process was calorimetrically followed to give exothermic enthalpy and negative Gibbs energy, reflecting spontaneous intercalation reactions at the solid/liquid interface. The displacement of solvent molecules bonded to amine and of those on the matrix during the intercalation increases the disorder to result in positive entropy, giving a favorable set of thermodynamic data for this system.  相似文献   

13.
K4Nb6O17 was prepared by hydrothermal treatment of Nb2O5 in KOH solution at 180 °C, and then Methylene blue (MB) intercalated K4Nb6O17 (K4Nb6O17-MB) was prepared by one-pot reaction in which n-propylamine (PA) was used as an intercalation compound. The MB intercalated structure of K4Nb6O17-MB was characterized by HRTEM and XRD measurements. K4Nb6O17-MB shows good absorption in the visible region and is thermally stable up to 328 °C. By extending the hydrothermal time and selecting the K4Nb6O17 with high crystallinity, the K4Nb6O17-MB prepared by one-pot reaction showed higher visible light (λ>550 nm) photocatalytic activity than that prepared by traditional two-step electrostatic self-assembly deposition (ESD) method for the degradation of methyl orange (MO).  相似文献   

14.
Basic structural aspects about the layered hexaniobate of K4Nb6O17 composition and its proton-exchanged form were investigated mainly by spectroscopic techniques. Raman spectra of hydrous K4Nb6O17 and H2K2Nb6O17·H2O show significant modifications in the 950-800 cm−1 region (Nb-O stretching mode of highly distorted NbO6 octahedra). The band at 900 cm−1 shifts to 940 cm−1 after the replacement of K+ ion by proton. Raman spectra of the original materials and the related deuterated samples are similar suggesting that no isotopic effect occurs. Major modifications were observed when H2K2Nb6O17 was dehydrated: the relative intensity of the band at 940 cm−1 decreases and new bands seems to be present at about 860-890 cm−1. The H+ ions should be shielded by the hydration sphere what preclude the interaction with the layers. Removing the water molecules, H+ ions can establish a strong interaction with oxygen atoms, decreasing the bond order of Nb-O linkage. X-ray absorption near edge structure studies performed at Nb K-edge indicate that the niobium coordination number and oxidation state remain identical after the replacement of potassium by proton. From the refinement of the fine structure, it appears that the Nb-Nb coordination shell is divided into two main contributions of about 0.33 and 0.39 nm, and interestingly the population, i.e., the number of backscattering atoms is inversed between the two hexaniobate materials.  相似文献   

15.
To better study possible solid-state interactions between captopril (CAP) and different types of lubricants at the surface, grinding process was applied to enhance the probability of reaction. Grinding process was carried out for 5 min at room temperature under 32±5% or 80±5% relative humidity (RH) condition. The physical and ground mixtures of CAP and each lubricant (weight ratio: 1:1) were examined by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) microspectroscopy equipped with or without micro hot stage. The results indicate that CAP did not interact with talc, Precirol or stearic acid even if the grinding process was applied. However, a mixture of CAP and each metallic stearate before and after grinding exhibited a different behavior. Although there was a lack of interaction between CAP and sodium stearate in the course of grinding process, this process could induce the trans–cis isomerization of CAP in the CAP–sodium stearate ground mixture. No evidence was observed to show the solid-state interaction between CAP and monoaluminum stearate, but the grinding process seemed to accelerate the solid-state interaction of CAP with magnesium stearate (MgSt). The fact that solid-state interaction occurred between CAP and MgSt was proven by the shifting of the IR spectral peak of νas (COO) of stearate from 1578 to 1541 cm−1, due to interaction of the OH group in carboxylic acid structure of CAP with bridging coordination of the COO group of MgSt via hydrogen bonding of water. The interaction occurred between CAP and MgSt was stopped at 60 °C, due to the dehydration of water from the ground mixture.  相似文献   

16.
Like its stoichiometric predecessors, tetragonal ScF2.76 showed the tendency to undergo structural evolution under pressure. A new polymorph modification of scandium fluoride deficient in fluorine has been prepared after treatment at 40 kbar. The compound belongs in a cubic system, lattice parameter a=6.503 Å. The structural relationships with other forms of scandium fluoride and possible applications are discussed.  相似文献   

17.
ZnF2-P2O5-TeO2 glasses containing different concentrations of MnO (ranging from 0 to 0.6%) were prepared. A number of studies, viz. differential thermal analysis, optical absorption, thermo luminescence, infrared spectra, magnetic susceptibility, elastic properties (Young's modulus Y, shear modulus n and micro hardness H) and dielectric properties (constant ε, loss tan δ, a.c. conductivity σac over a range of frequency and temperature and dielectric breakdown strength), of these glasses were carried out as a function of manganese ion concentration. The analysis of the results indicate manganese ions mostly exist in Mn2+ state in these glasses when the concentration of MnO≤0.4% and above this concentration manganese ions predominantly exist in Mn3+ state; from this analysis an attempt is made to identify the role of these ions on the stability of glass network.  相似文献   

18.
Lanthanum aluminate ceramic powders could be prepared by a combined gel precipitation process from metal chlorides using ammonia. A slight modification in the conventional gel precipitation technique was carried out by introducing a step of ultrasonication followed by centrifugal washing of the gel. The dried gels produced pure phase lanthanum aluminate powders on calcination at 1100 °C for the combined gel-precipitated powders, and at 600 °C for the washed gel. The phase evolution was studied and it was found that the delay in obtaining monophasic LaAlO3 in the combined gel-precipitated powder owed to the crystallization of an impure phase LaOCl. This phase was not detected in the washed gel (WG) powders. TEM micrographs showed a uniform morphology for the calcined WG powders, which were in contrast to the irregular particles in the gel-precipitated (GP) powders. The uniform morphology was assigned to the ultrasonic effects during washing of the gel.  相似文献   

19.
High resolution X-ray powder diffraction studies have shown SrRhO3 to transform from an orthorhombic Pnma structure at room temperature through an intermediate Imma phase to a tetragonal I4/mcm structure near 800 °C. The orthorhombic Imma phase exists over a very limited temperature range, of less than 20°. The diffraction data suggests the Pnma to Imma transition is continuous and demonstrates that the Imma-I4/mcm transition is first order.  相似文献   

20.
Chemical preparation and crystal structure are given for a new cyclotetraphosphate: [3,5-(CH3)2C6H3NH3]4P4O12·3H2O. This compound is triclinic P with the following unit-cell parameters: a=8.298(3), b=8.299(3), c=17.242(7)Å, α=97.13(3), β=102.72(3), γ=64.55(3)°, Z=1 and V=1045.2(8)Å3. The crystal structure has been solved and refined to R=0.040 using 6086 independent reflections. The atomic arrangement can be described as layers organization. Layers built by P4O12 ring anions, ammonium groups and water molecules parallel to the plan (001), between which the organic groups are located. Characterization by X-ray diffraction, IR absorption, and thermal analysis are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号