首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple system is described, which oxidizes saturated hydrocarbons either in acetonitrile or (less efficiently) in water. The system consists of 50% aqueous hydrogen peroxide as an oxidant, sodium metavanadate, NaVO3, as a catalyst and sulfuric (or oxalic) acid as a co-catalyst. The reactions were carried out at 20-50 °C. In the oxidation of cyclohexane in acetonitrile, the highest yield (37% based on cyclohexane) and turnover number (TON=1700) were attained after 3 h at 50 °C. The corresponding parameters were 16% and 1090 for n-heptane oxidation under the same conditions. The oxidation of higher alkanes, RH, in acetonitrile gives almost exclusively the corresponding alkyl hydroperoxides, ROOH. Light alkanes (n-butane, propane, ethane, and methane) have been also oxygenated by the system under consideration. The highest TON (200) was attained for ethane and the highest yield (19%) was obtained in the case of n-butane. The selectivity parameters measured for the oxidation of linear and branched alkanes are low, the reaction with cis- and trans-1,2-dimethylcyclohexanes is not stereoselective. These facts lead us to conclude that the oxidation occurs with the formation of hydroxyl radicals in the crucial step.  相似文献   

2.
Hydrogen peroxide oxidation of cyclohexane in acetonitrile solution catalyzed by the dinuclear manganese(IV) complex [LMn(O)3MnL](PF6)2 (L=1,4,7-trimethyl-1,4,7-triazacyclononane, TMTACN) at 25 °C in the presence of a carboxylic acid affords cyclohexyl hydroperoxide as well as cyclohexanone and cyclohexanol. A kinetic study of the reactions with participation of three acids (acetic acid, oxalic acid, and pyrazine-2,3-dicarboxylic acid, 2,3-PDCA) led to the following general scheme. In the first stage, the catalyst precursor forms an adduct. The equilibrium constants K1 calculated for acetic acid, oxalic acid, and 2,3-PDCA were 127±8, (7±2)×104, and 1250±50 M−1, respectively. The same kinetic scheme was applied for the cyclohexanol oxidation catalyzed by the complex in the presence of oxalic acid. The oxidation of cyclohexane in water solution using oxalic acid as a co-catalyst gave cyclohexanol and cyclohexanone, which were rapidly transformed into a mixture of over-oxidation products. In the oxidation of cyclohexanol to cyclohexanone, varying the concentrations of the reactants and the reaction time we were able to find optimal conditions and to obtain the cyclohexanone in 94% yield based on the starting cyclohexanol. Oxidation of acetone to acetic acid by the system containing oxalic acid was also studied.  相似文献   

3.
Titanosilicalite TS-1 catalyses oxidation of light (methane, ethane, propane and n-butane) and normal higher (hexane, heptane, octane and nonane) alkanes to give the corresponding isomeric alcohols and ketones. The oxidation of higher alkanes proceeds in many cases with a unique regioselectivity. Thus, in the reaction with n-heptane the CH2 groups in position 3 exhibited a reactivity 2.5 times higher than those of the other methylene groups. This selectivity can be enhanced if hexan-3-ol is added to the reaction mixture, the 3-CH2/2-CH2 ratio becoming 10. It is assumed that the unusual selectivity in the oxidation of n-heptane (and other higher alkanes) is due to steric hindrance in the catalyst cavity. As a result, the catalytically active species situated on the catalyst walls can only easily react with certain methylenes of the alkane, which is adsorbed in the cavity taking U-shape (hairpin) conformations.  相似文献   

4.
Galina V. Nizova 《Tetrahedron》2007,63(33):7997-8001
Certain amino acids used in small amounts (10 catalyst equiv) strongly accelerate the H2O2 oxidation of cyclohexane catalyzed by a dinuclear manganese(IV) complex with 1,4,7-trimethyl-1,4,7-triazacyclononane. The efficiency of the co-catalyst dramatically depends on the nature and structure of the acid. Pyrazine-2,3-dicarboxylic acid (2,3-PDCA) has been found to be the most efficient co-catalyst whereas picolinic acid is almost inactive in this oxidation. The highest rate has been attained when 2,3-PDCA was used in combination with trifluoroacetic acid.  相似文献   

5.
Oxidation of alkanes with hydrogen peroxide in water solution at 10-50 °C is efficiently catalyzed by the cationic dinuclear manganese (IV) derivative [Mn2L2O3]2+ (1, with L = 1,4,7-trimethyl-1,4,7-triazacyclononane, TMTACN) in the form of the hexafluorophosphate salt ([1][PF6]2) if oxalic acid is present as a co-catalyst. Methane gives methanol and formaldehyde (turnover numbers, TONs, were 7 and 2, respectively, after reduction of the reaction mixture with ascorbic acid) whereas cyclohexane was oxidized with TONs up to 160 affording cyclohexyl hydroperoxide, cyclohexanone and cyclohexanol (the ketone was the main product, although at room temperature almost pure alkyl hydroperoxide was formed). In contrast to the oxidation in acetonitrile, the reaction with linear n-alkanes in water exhibits an unusual distribution of oxygenates. For example, in the oxidation of n-heptane the normalized reactivity of the methylene group in position 4 of the chain is 3-7 times higher than that of the CH2 group in position 2. Dec-1-ene is epoxidized by hydrogen peroxide in water (a biphasic system) catalyzed by [1][PF6]2 and oxalic acid in the presence of a small amount of acetonitrile with TONs up to 1000 (no epoxidation has been detected in the absence of MeCN).  相似文献   

6.
N-Boc derivatives of Met, Cys, and Trp, the properties of which resemble those of the respective amino acid residues present in proteins, are efficiently oxidized by methyltrioxorhenium and H2O2. A high regioselectivity for the oxidation of these residues when embedded into peptides was also found.  相似文献   

7.
Two binuclear Mn-Me3TACN (Me3TACN is 1,4,7-N,N′,N″-trimethyl-1,4,7-triazacyclononane) compounds catalyze the oxygenation of organic sulfides utilizing H2O2 under ambient conditions. Both phenyl sulfide and ethyl phenyl sulfide were converted to the corresponding sulfones and chloroethyl phenyl sulfide proceeds to its elimination product of phenyl vinyl sulfone.  相似文献   

8.
A variety of organosulfur compounds have been selectively oxidized to the corresponding sulfoxides by either H2O2 or HNO3 using a newly developed solid acid catalyst composed of 84.5% of TiO2 and 15.5% of [Ti4H11(PO4)9nH2O (n = 1-4). The chemoselective oxidation of sulfides in the presence of vulnerable groups such as -CN, -CC-, -CHO, or -OH, as well as sulfoxidation of substrates like benzothiazole, glycosyl sulfide, and dibenzothiophenes is some of the important attribute of the protocol. Nitric acid, under the present experimental conditions, brings about relatively better selectivity than hydrogen peroxide.  相似文献   

9.
Dialkyl, aryl-alkyl, benzylic, and benzothiophenic sulfides are selectively oxidized to sulfoxides or sulfones, with stoichiometric amounts of H2O2 (aq) or TBHP, in the presence of complexes Cp′Mo(CO)3Cl, CpMoO2Cl and the mesoporous material MCM-41-2 as catalysts. The use of the thianthrene 5-oxide (SSO) probe shows that CpMo(CO)3Cl/H2O2 or TBHP are electrophilic oxidants (Xso ? 15). The same conclusion is drawn from competition experiments with a mixture of p-ClC6H4SCH3 and C6H5SOCH3.  相似文献   

10.
The one-pot cyclopropanation of styrene using ClnAlEt3−n (Et2AlCl, EtAlCl2, AlCl3) and carboxylic esters in the presence of Cp2ZrCl2 as catalyst gives rise to alkoxycyclopropanes.  相似文献   

11.
Pd/Al2O3 catalysts were prepared by the impregnation method and were used for the direct formation of hydrogen peroxide from H2 and O2. The H2O2 concentration and selectivity were strongly dependent on the solubility of hydrogen in the reaction medium. The modification of the support by halogenate has a beneficial effect on the selectivity. The state of the active Pd on Pd/Al2O3 catalysts was studied using X-ray photoelectron spectroscopy, and Pd(0) was found to be active.  相似文献   

12.
The effect of chloride, sulfate and nitrate anions on the color removal of water containing the azo-dye reactive blue 69 (RB69) in acidic solution, by using photo-assisted Fenton process with Fe(II)/H2O2 and Fe(III)/H2O2 systems was investigated. Experiments were conducted in a batch reactor irradiated during 5 h with a domestic 15 W lamp with emission in the visible spectra. Experimental results showed color disappearance in the first 5 min of reaction in the photo-assisted process for all of the different salts, greatly enhancing the reaction rate with respect to the corresponding systems under dark conditions. The exception of the general trend was the Fe2(SO4)3/H2O2/UV system, where the decolorization process is slower probably because the oxidative species generated by rupture of Fe(III)–peroxo complexes are less reactive. Total organic matter depletion and mineralization of the effluent were also tested during the experimental runs by means of total organic carbon (TOC) showing that, for most of the photo-assisted experiments high mineralization was reached after 3 h of reaction.  相似文献   

13.
Theoretical investigations on the kinetics of the elementary reaction H2O2+H→H2O+OH were performed using the transition state theory (TST). Ab initio (MP2//CASSCF) and density functional theory (B3LYP) methods were used with large basis set to predict the kinetic parameters; the classical barrier height and the pre-exponential factor. The ZPE and BSSE corrected value of the classical barrier height was predicted to be 4.1 kcal mol−1 for MP2//CASSCF and 4.3 kcal mol−1 for B3LYP calculations. The experimental value fitted from Arrhenius expressions ranges from 3.6 to 3.9 kcal mol−1. Thermal rate constants of the title reaction, based on the ab initio and DFT calculations, was evaluated for temperature ranging from 200 to 2500 K assuming a direct reaction mechanism. The modeled ab initio-TST and DFT–TST rate constants calculated without tunneling were found to be in reasonable agreement with the observed ones indicating that the contribution of the tunneling effect to the reaction was predicted to be unimportant at ambient temperature.  相似文献   

14.
Two new procedures were employed for studying the reaction of hydrogen atoms with hydrogen peroxide. The absorption in the UV-range was observed either for an acidic aqueous solution containing only hydrogen peroxide or for a similar solution but also containing an aliphatic alcohol. From the increase in absorption of various alcohol radicals, a rate constant of 3.5×107 dm3 mol−1 s−1 was determined. In addition, the rate constant for the reaction of hydroxyl radicals with hydrogen peroxide was determined to be 3.0×107 dm3 mol−1 s−1.  相似文献   

15.
A carbonyl osmium(0) complex with π-coordinated olefin, (2,3-η-1,4-diphenylbut-2-en-1,4-dione)undecacarbonyl triangulotriosmium (1), efficiently catalyzes oxygenation of alkanes (cyclohexane, cyclooctane, n-heptane, isooctane, etc.) with hydrogen peroxide, as well as with tert-butyl hydroperoxide and meta-chloroperoxybenzoic acid in acetonitrile solution. Alkanes are oxidized to corresponding alcohols, ketones (aldehydes) and alkyl hydroperoxides. Thus, heating cyclooctane with the 1-H2O2 combination at 70 °C gave products with turnover number as high as 2400 after 6 h. The maximum obtained yield of all products was equal to 20% based on cyclohexane and 30% based on H2O2. The oxidation of linear and branched alkanes exhibits very low regio- and bond-selectivity parameters and this testifies that the reaction proceeds via attack of hydroxyl radicals on C-H bonds of the alkane. The oxygenation products were not formed when the reaction was carried out under argon atmosphere and it can be thus concluded that the oxygenation occurs via the reaction between alkyl radicals and atmospheric oxygen. In summary, the Os(0) complex is much more powerful generator of hydroxyl radicals than any soluble derivative of iron (which is an analogue of osmium in the Periodic System).  相似文献   

16.
利用溶胶-凝胶法合成纳米NiCo2O4,并利用X射线衍射和透射电镜分析其结构和表面形貌. 结果表明NiCo2O4具有尖晶石结构, 平均粒径约为15 nm. 利用电势线性扫描和恒电势法测定了其对H2O2在碱性溶液中电化学还原反应的催化性能. 发现NiCo2O4对H2O2电化学还原具有高的催化活性和稳定性, 在H2O2浓度低于0.6 mol·L-1时, 其电化学还原反应主要通过直接还原途径进行. 以NiCo2O4为阴极催化剂的Al-H2O2半燃料电池在室温下的开路电压达1.6 V; 在1.0 mol·L-1 H2O2溶液中, 峰值功率密度达209 mW·cm-2, 此时电流密度为220 mA·cm-2.  相似文献   

17.
Room temperature ionic liquid [bmim]PF6 was used to immobilize a bimetallic catalytic system for H2O2-based dihydroxylation of alkenes. Osmium tetroxide was used as the substrate-selective catalyst with either VO(acac)2 or MeReO3 as co-catalyst. The latter serve as an electron transfer mediator (ETM) and activates H2O2. For an increased efficiency N-methylmorpholine is required as an additional ETM in most cases. A range of alkenes were dihydroxylated using this robust bimetallic system and it was demonstrated that for some of the alkenes the catalytic system can be recycled and used up to five times.  相似文献   

18.
张恒耘  吕迎  李军  高爽  奚祖威 《催化学报》2010,31(10):1253-1256
 以原位 H2O2 为氧源, 在新型反应控制相转移催化剂 (RCPTC) 作用下丙烯环氧化反应中, 考察了反应温度、反应时间、H2O2 浓度和催化剂浓度对反应性能的影响. 结果表明, 在适宜的反应条件下, RCPTC 催化剂循环使用 5 次后, 环氧丙烷产率仍维持在 85.6% 以上, 且催化剂循环反应 3 次后, 其组成趋于稳定.  相似文献   

19.
A series of amphiphilic fluorinated zirconia containing titanium was prepared by titanium impregnation followed by fluorination and alkylsilylation of zirconium oxide. Physical properties of the resulting samples were characterized by XRD analysis, UV-vis spectroscopy, BET surface area analysis and EDAX analysis. The effects of fluorine and alkylsilane groups on the samples were studied by the epoxidation of 1-octene with aqueous hydrogen peroxide. The epoxidation of alkenes is one of the most important methods of functionalizing simple hydrocarbons. The amphiphilic fluorinated catalysts were more active and more efficient than the conventional titania-silica and zirconia-silica mixed oxides in linear alkene epoxidation; enhanced by the presence of alkylsilane and fluorine groups in the catalysts. Modification with alkylsilane successfully induces the hydrophobic behavior of zirconia which is hydrophilic in nature; whereas fluorine was chosen for its electron-withdrawing effect which further activates the titanium active sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号