首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of mononuclear organoruthenium complexes of the type [RuX(PPh3)2(L)] (X = Cl or Br; L = 2-(arylazo)phenolate ligand) have been synthesized from the reaction of five 2-(arylazo)phenol ligands with ruthenium(III) precursors, viz. [RuCl3(PPh3)3] and [RuBr3(PPh3)2(CH3OH)] in benzene under reflux. In all these reactions, the 2-(arylazo)phenolate ligand replaces one triphenylphosphine molecule, two chlorides or bromides and one methanol from the precursors leading to five-membered cyclometallated species. The 2-(arylazo)phenol ligands behave as dianionic tridentate C, N, O donors and coordinated to ruthenium by dissociation of the phenolic proton and the phenyl proton at the ortho position of the phenyl ring. The compositions of the complexes have been established by elemental analysis, magnetic susceptibility measurement, FT-IR, UV-Vis and EPR spectral data. These complexes are paramagnetic and shows intense d-d and charge transfer transitions in chloroform. The solution EPR spectrum of the complex 7 in dichloromethane at 77 K shows rhombic distortion around the ruthenium ion. The structural conformation of the complex 1 has been carried out by X-ray crystallography. The redox behavior of the complexes has been investigated by cyclic voltammetry and the potentials are observed with respect to the electronic nature of substituents (R) in the 2-(arylazo) phenolate ligands. These complexes catalyze transfer hydrogenation of benzophenone to benzhydrol with up to 99.5% in the presence of i-prOH/KOH. Further, these complexes have shown great promise in inhibiting the growth of both Gram +ve and Gram −ve bacteria, viz. Staphylococcus aureus NCIM 2079 and Escherichia coli NCIM 2065 and fungus Candida albicans NCIM 3102.  相似文献   

2.
Diamagnetic ruthenium(II) complexes of the type [Ru(L)(CO)(B)(EPh3)] [where E = As, B = AsPh3; E = P, B = PPh3, py (or) pip and L = dibasic tridentate ligands dehydroacetic acid semicarbazone (abbreviated as dhasc) or dehydroacetic acid phenyl thiosemicarbazone (abbreviated as dhaptsc)] were synthesized from the reaction of [RuHCl(CO)(B)(EPh3)2] (where E = As, B = AsPh3; E = P, B = PPh3, py (or) pip) with different tridentate chelating ligands derived from dehydroacetic acid with semicarbazide or phenylthiosemicarbazide. All the complexes have been characterized by elemental analysis, FT-IR, UV–Vis and 1H NMR spectral methods. The coordination mode of the ligands and the geometry of the complexes were confirmed by single crystal X-ray crystallography of one of the complexes [Ru(dhaptsc)(CO)(PPh3)2] (5). All the complexes are redox active and are monitored by cyclic voltammetric technique. Further, the catalytic efficiency of one of the ruthenium complexes (5) was determined in the case of oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide.  相似文献   

3.
A series of Ru(II) and Ru(III) complexes of the types [RuX(CO)(EPh3)2L] (X = H, E = P; X = Cl, E = P or As) and [RuX2(EPh3)2L] (X = Cl, E = P or As; X = Br, E = As, L = monoanion of dehydroacetic acid) have been synthesized in order to explore their biological activities, such as DNA-binding and antibacterial activity. The complexes were characterized by analytical and spectroscopic techniques. The crystal and molecular structure of [RuCl2(AsPh3)2(L)] has been determined by single crystal XRD. The cyclic voltammograms of the complexes in acetonitrile displayed either quasi-reversible or irreversible redox couples based on the metal centre. The ligand, dehydroacetic acid (DHA) and its metal complexes were tested against five pathogenic bacteria. Absorption titration and cyclic voltammetric studies revealed that the complexes interact with Herring Sperm ds DNA through different binding modes to different extents.  相似文献   

4.
Twelve ruthenium(III) complexes bearing amine-bis(phenolate) tripodal ligands of general formula [Ru(L1–L3)(X)(EPh3)2] (where L1–L3 are dianionic tridentate chelator) have been synthesized by the reaction of ruthenium(III) precursors [RuX3(EPh3)3] (where E = P, X = Cl; E = As, X = Cl or Br) and [RuBr3(PPh3)2(CH3OH)] with the tripodal tridentate ligands H2L1, H2L2 and H2L3 in benzene in 1:1 molar ratio. The newly synthesized complexes have been characterized by analytical (elemental and magnetic susceptibility) and spectral methods. The complexes are one electron paramagnetic (low-spin, d5) in nature. The EPR spectra of the powdered samples at RT and the liquid samples at LNT shows the presence of three different ‘g’ values (gx ≠ gy ≠ gz) indicate a rhombic distortion around the ruthenium ion. The redox potentials indicate that all the complexes undergo one electron transfer process. The catalytic activity of one of the complexes [Ru(pcr-chx)Br(AsPh3)2] was examined in the transfer hydrogenation of ketones and was found to be efficient with conversion up to 99% in the presence of isopropanol/KOH.  相似文献   

5.
Tungsten(VI) and molybdenum(VI) complexes [MO(L1)Cl2] and [M(X)(L2)Cl3] (X = O, NPh) with tridentate aminobis(phenolate) ligand L1 = methylamino-N,N-bis(2-methylene-4,6-dimethylphenolate) and bidentate aminophenolate ligand L2 = 2,4-di-tert-butyl-6-((dimethylamino)methyl)phenolate) were prepared and characterised. These complexes are principally stable in open atmosphere under ambient conditions. When activated with Et2AlCl, they exhibited high activity in ring-opening metathesis polymerisation (ROMP) of 2-norbornene (NBE) and its derivatives. Especially complexes [M(NPh)(L2)Cl3], which are easily available from corresponding metal oxides MO3 by a simple three-step synthesis, were found very efficient ROMP catalysts for NBE (M = Mo, W) and 2-norbornen-5-yl acetate (M = Mo).  相似文献   

6.
The [ReOCl2(hmpbta)(AsPh3)] · MeCN, [ReOBr2(hmpbta)(AsPh3)] · MeCN, [ReOCl2(hmpbta)(PPh3)] · MeCN, [ReOBr2(hmpbta)(PPh3)] · MeCN, and [ReBr2(hmpbta)(PPh3)] · MeCN complexes have been prepared in the reactions of [ReOX3(EPh3)2] (X = Cl, Br; E = P, As) with 2-(2’-hydoxy-5′-methylphenyl)benzotriazole in molar ratio 1:1. All the compounds were structurally and spectroscopically characterized. The electronic structure of [ReOCl2(hmpbta)(AsPh3)] has been calculated with the density functional theory (DFT) method. The TDDFT/PCM calculations have been employed to produce a hundred of singlet excited-states starting from the ground-state geometry optimized in the gas phase, and the UV–Vis spectrum of [ReOCl2(hmpbta)(AsPh3)] has been discussed on this basis. The paper reports also X-ray structure and DFT calculations for the disubstituted [ReOCl(hmpbta)2] chelate.  相似文献   

7.
Cyclometallated Ru(II) complexes of the type [Ru(CO)(EPh3)2(L)] (E = P or As; L = tridentate hydrazone-derived ligand) have been obtained by refluxing an ethanolic solution of [RuHCl(CO)(PPh3)3] or [RuHCl(CO)(AsPh3)3] with the hydrazone derivatives H2php (2-[(2,4-dinitro-phenyl)-hydrazonomethyl]-phenol), H2phm (2-[(2,4-dinitro-phenyl)-hydrazonomethyl]-6-methoxy-phenol) and H2phn (2-[(2,4-dinitro-phenyl)-hydrazonomethyl]-naphthalen-1-ol). The formation of stable cyclometallated complexes has been authenticated by single crystal X-ray structure determination of two of the complexes, and the mechanism of C–H activation is discussed in detail. The spectral (IR, UV–Vis and 1H NMR) and electrochemical data for all the complexes are reported. Electrochemistry shows a substantial variation in the metal redox potentials with regard to the electronic nature of the substituents present in the hydrazone derivative.  相似文献   

8.
The reaction of [RuHCl(CO)(B)(EPh3)2] (where E = As, B = AsPh3; E = P, B = PPh3, py, pip, or mor) and dehydroacetic acid thiosemicarbazone (abbreviated as H2dhatsc where H2 stands for the two dissociable protons) in benzene under reflux afford a series of new ruthenium(II) carbonyl complexes containing dehydroacetic acid thiosemicarbazone of general formula [Ru(dhatsc)(CO)(B)(EPh3)] (where E = As, B = AsPh3; E = P, B = PPh3, py, pip or mor; dhatsc = dibasic tridentate dehydroacetic acid thiosemicarbazone). All the complexes have been characterized by elemental analyses, FT-IR, UV-Vis, and 1H NMR spectral methods. The thiosemicarbazone of dehydroacetic acid behaves as dianionic tridentate O, N, S donor and coordinates to ruthenium via phenolic oxygen of dehydroacetic acid, the imine nitrogen of thiosemicarbazone and thiol sulfur. In chloroform solution, all the complexes exhibit metal-to-ligand charge transfer transitions (MLCT). The crystal structure of one of the complexes [Ru(dhatsc)(CO)(PPh3)2] (1) has been determined by single crystal X-ray diffraction which reveals the presence of a distorted octahedral geometry in the complexes. All the complexes exhibit an irreversible oxidation (RuIII/RuII) in the range 0.76-0.89 V and an irreversible reduction (RuII/RuI) in the range −0.87 to −0.97 V. Further, the free ligand and its ruthenium complexes have been screened for their antibacterial and antifungal activities. The complexes show better activity in inhibiting the growth of bacteria Staphylococcus aureus and Escherichia coli and fungus Candida albicans and Aspergillus niger. These results made it desirable to delineate a comparison between free ligand and its ruthenium complexes.  相似文献   

9.
Paramagnetic Ru(III) complexes of the type [RuX2(EPh3)2(L)] (where X = Cl or Br; E = P or As; L = monobasic bidentate benzophenone ligand) have been synthesized from the reaction of ruthenium(III) precursors, viz. [RuX3(EPh3)3] (where X = Cl, E = P; X = Cl or Br, E = As) or [RuBr3(PPh3)2(CH3OH)] and substituted hydroxy benzophenones in a 1:1 molar ratio in benzene under reflux for 6 h. The hydroxy benzophenone ligands behave as monoanionic bidentate O,O donors and coordinate to ruthenium through the phenolate oxygen and ketonic oxygen atoms, generating a six-membered chelate ring. The compositions of the complexes have been established by analytical and spectral (FT-IR, UV-Vis, EPR) and X-ray crystallography methods. The single crystal structure of the complex [RuCl2(PPh3)2(L1)] (1) has been determined by X-ray crystallography and indicates the presence of a distorted octahedral geometry in these complexes. The magnetic moment values of the complexes are in the range 1.75-1.89 μB, which reveals the presence of one unpaired electron in the metal ion. EPR spectra of liquid samples at liquid nitrogen temperature (LNT) show a rhombic distortion (gx ≠ gy ≠ gz) around the ruthenium ion. The complexes are redox active and display quasi-reversible oxidation and quasi-reversible reduction waves versus Ag/AgCl.  相似文献   

10.
Four new mixed ligand nickel(II) complexes viz., [Ni(tren)(phen)](ClO4)2 (1), [Ni(tren)(bipy)](ClO4)2 (2), [Ni(SAA)(PMDT)] · 2H2O (3) and [Ni(SAA)(TPTZ)] (4) (tren = tris(2-aminoethylamine), phen = 1,10-phenanthroline, bipy = 2,2′-bipyridine, SAA = salicylidene anthranilic acid, PMDT = N,N,N′,N″,N″-pentamethyldiethylenetriamine, TPTZ = 2,4,6-tri(2-pyridyl)-1,3,5-triazine) have been synthesized and characterized by means of elemental analysis, spectroscopic, magnetic susceptibility and cyclic voltammetric measurements. Single crystal X-ray analysis of [Ni(tren)(phen)](ClO4)2 (1) and [Ni(SAA)(PMDT)] · 2H2O (3) has revealed the presence of a distorted octahedral geometry. Superoxide dismutase activity of these complexes has also been measured.  相似文献   

11.
Treatment of [RuCl3(PPh3)3] with 1-(arylazo)naphthol ligands in benzene under reflux afford air-stable new organoruthenium(III) complexes with general composition [Ru(an-R)Cl(PPh3)2] (where, R = H, Cl, CH3, OCH3, OC2H5) in fairly good yield. The 1-(arylazo)naphtholate ligands behave as dianionic tridentate C, N, O donors and coordinates to ruthenium through phenolic oxygen, azo nitrogen and ortho carbon generate two five-membered chelate rings. The composition of the complexes have been established by analytical (elemental analysis and magnetic susceptibility measurement) and spectral (FT-IR, UV-Vis, EPR) methods. The complexes are paramagnetic (low-spin, d5) in nature and in dichloromethane solution show intense d-d transitions and ligand-to-metal charge transfer (LMCT) transitions in the visible region. The solution EPR spectrum of complex [Ru(an-CH3)Cl(PPh3)2] (3) in dichloromethane at 77 K shows rhombic distortion around the ruthenium ion with three different ‘g’ values (gx ≠ gy ≠ gz). The single crystal structure of the complex [Ru(an-OCH3)Cl(PPh3)2] (4) has been characterised by X-ray crystallography, indicates the presence of a distorted octahedral geometry in these complexes. All the complexes exhibit one quasi-reversible oxidative response in the range 0.60-0.79 V (RuIV/RuIII) and two quasi-reversible reductive responses (RuIII/RuII; RuII/RuI) within the range −0.50 to −0.62 V and −0.93 to −0.98 V respectively. The formal potential of all the couples correlate linearly with the Hammett constant of the para substituent in arylazo fragment of the 1-(arylazo)naphtholate ligand. Further, the catalytic efficiency of one of the ruthenium complexes (4) was determined for the transfer hydrogenation of ketones with an excellent yield up to 99% in the presence of isopropanol/KOH.  相似文献   

12.
Five new mixed ligand coper(II) complexes, viz. [Cu(SAA)(H2O)] (1), [Cu(SAA)(MeImH)] (2), [Cu(SAA)(EtImH)] (3), [Cu(SAA)(BenzImH)] (4) and [Cu(SAA)(MebenzImH)] (5), where SAA = salicylideneanthranilic acid, MeImH = 2-methylimidazole, EtImH = 2-ethylimidazole, BenzImH = benzimidazole, MebenzImH = 2-methylbenzimidazole, have been synthesized and characterized by means of elemental analysis, FAB mass spectrometry, magnetic susceptibility, X-band EPR, electronic spectroscopy, IR and cyclic voltammetry. The frozen solution EPR spectra of the complexes have shown axial features. Single crystal X-ray analysis of 2 and 3 has revealed the presence of a distorted square planar geometry (N2O2) in the complexes. The superoxide dismutase (SOD) activity of the present complexes has also been measured and discussed.  相似文献   

13.
Novel [ReOX(quin-2-c)2] complexes (X = Cl, Br; quin-2-c = quinoline-2-carboxylate ion) have been prepared by treatment of [ReOX3(AsPh3)2] with an excess of quinoline-2-carboxylic acid in acetonitrile. The complexes were characterised structurally and spectroscopically. The electronic structure of [ReOBr(quin-2-c)2] has been calculated with the density functional theory (DFT) method, and additional information about binding has been obtained by NBO analysis. The UV–Vis spectrum of [ReOBr(quin-2-c)2] has been discussed on the basis of TD-DFT calculations.  相似文献   

14.
Three new mononuclear complexes of copper(II), viz. [Cu(L)(N3)Cl] (1), [Cu(L′)(H2O)]ClO4 (2) and [Cu(L″)] (3) where L = N-(3-aminopropyl)-N-methylpropane-1,3-diamine, L′ = 2-(N-{3-[(3-aminopropyl)(methyl)amino]propyl}ethanimidoyl)phenolate ion and L″ = 2,2′-{(methylimino)bis[propane-3,1-diylnitrilo(1E)eth-1-yl-1-ylidene]}diphenolate ion, have been prepared. The synthesis of complex 1 has been achieved by reacting copper chloride with the triamine (L) and sodium azide in a 1:1:1 M ratio. The other two compounds have been synthesized by the reaction of copper perchlorate with the same triamine, L, plus 2-hydroxyacetophenone in a molar ratio of 1:1:1 (for 2) and 1:1:2 (for 3), so that the respective tetradentate and pentadentate Schiff bases HL′ and H2L″ are formed in situ to bind the copper(II) ions. The complexes have been characterized by microanalytical, spectroscopic and single crystal X-ray diffraction studies. Structural studies reveal that the mononuclear units of all the three complexes adopt a distorted square pyramidal geometry and are held together by either intermolecular H-bonding (in 1 and 2) or C-H?π interactions (in 3) to form supramolecular networks in the solid state.  相似文献   

15.
The reactions of palladium(II) chloride, PPh3 and heterocyclic-N/NS ligand in a mixture of CH3CN (5 ml) and CH3OH (5 ml) produced [PdCl2(PPh3)(L1)]·(CH3CN) (1) (L1 = ADMT = 3-amino-5,6-dimethyl-1,2,4-triazine), [PdCl2(PPh3)(L2)] (2) (L2 = 3-CNpy = 3-cyanopyridine), [PdCl(PPh3)(L3)]2·(CH3CN) (3), [PdCl(PPh3)2(HL3)]Cl (4) (HL3 = Hmbt = 2-mercaptobenzothiazole). The coordination geometry around the Pd atoms in these complexes is a distorted square plane. In 3, L3 acts as a bidentate ligand, bridging two metal centers, while in 4, HL3 appears as monodentate ligand with one nitrogen donor atom uncoordinated. Complexes 1-4 are characterized by IR, luminescence, NMR and single crystal X-ray diffraction analysis. All complexes exhibit luminescence in solid state at room temperature.  相似文献   

16.
Reactions of 2-(diphenylphosphinomethyl)aniline, H2L1, with [MNCl2(PPh3)2] complexes (M = Re, Tc) give the bis-chelates [MNCl(H2L1)2]Cl (M = Re, Tc) or the mono-chelate [ReNCl2(PPh3)(H2L1)] depending on the conditions applied. The aminophosphine reacts as a bidentate, neutral ligand in all three cases. The complexes were studied spectroscopically and by X-ray crystallography.  相似文献   

17.
J.G. Ma?ecki 《Polyhedron》2011,30(1):79-85
[RuHCl(CO)(PPh3)2(py)], [RuHCl(CO)(PPh3)2(pyIm)] and [RuCl(CO)(PPh3)2(pyoh)]·2CH3OH complexes (where py = pyridine, pyIm = imidazo[1,2-α]pyridine, pyoh = 2-hydroxy-6-methylpyridine) have been prepared and studied by IR, NMR, UV-Vis spectroscopy and X-ray crystallography. Electronic structures and bonding of the complexes were defined on the basis of DFT method, and the pyridine derivative ligands were compared on the basis of their donor-acceptor properties. Values of the ligand field parameter 10Dq and Racah’s parameters were estimated for the studied compounds, and the luminescence properties were determined.  相似文献   

18.
A series of mononuclear [M(EAr)2(dppe)] [M = Pd, Pt; E = Se, Te; Ar = phenyl, 2-thienyl; dppe = 1,2-bis(diphenylphosphino)ethane] complexes has been prepared in good yields by the reactions of [MCl2(dppe)] and corresponding ArE with a special emphasis on the aryltellurolato palladium and -platinum complexes for which the existing structural information is virtually non-existent. The complexes have crystallized in five isomorphic groups: (1) [Pd(SePh)2(dppe)] and [Pt(SePh)2(dppe)], (2) [Pd(TePh)2(dppe)] and [Pt(TePh)2(dppe)], (3) [Pd(SeTh)2(dppe)], (4) [Pt(SeTh)2(dppe)] and [Pd(TeTh)2(dppe)], and (5) [Pt(TePh)2(dppe)]. In addition, solvated [Pd(TePh)2(dppe)] · CH3OH and [Pd(TeTh)2(dppe)] · 1/2CH2Cl2 could be isolated and structurally characterized. The metal atom in each complex exhibits an approximate square-planar coordination. The Pd-Se, Pt-Se, Pd-Te, and Pt-Te bonds span a range of 2.4350(7)-2.4828(7) Å, 2.442(1)-2.511(1) Å, 2.5871(7)-2.6704(8) Å, and 2.6053(6)-2.6594(9) Å, respectively, and the respective Pd-P and Pt-P bond distances are 2.265(2)-2.295(2) Å and 2.247(2)-2.270(2) Å. The orientation of the arylchalcogenolato ligands with respect to the M(E2)(P2) plane has been found to depend on the E-M-E bond angle. The NMR spectroscopic information indicates the formation of only cis-[M(EAr)2(dppe)] complexes in solution. The trends in the 31P, 77Se, 125Te, and 195Pt chemical shifts expectedly depend on the nature of metal, chalcogen, and aryl group. Each trend can be considered independently of other factors. The 77Se or 125Te resonances appear as second-order multiplets in case of palladium and platinum complexes, respectively. Spectral simulation has yielded all relevant coupling constants.  相似文献   

19.
Halide abstraction from [Pd(μ-Cl)(Fmes)(NCMe)]2 (Fmes = 2,4,6-tris(trifluoromethyl)phenyl or nonafluoromesityl) with TlBF4 in CH2Cl2/MeCN gives [Pd(Fmes)(NCMe)3]BF4, which reacts with monodentate ligands to give the monosubstituted products trans-[Pd(Fmes)L(NCMe)2]BF4 (L = PPh3, P(o-Tol)3, 3,5-lut, 2,4-lut, 2,6-lut; lut = dimethylpyridine), the disubstituted products trans-[Pd(Fmes)(NCMe)(PPh3)2]BF4, cis-[Pd(Fmes)(3,5-lut)2(NCMe)]BF4, or the trisubstituted products [Pd(Fmes)L3]BF4 (L = CNtBu, PHPh2, 3,5-lut, 2,4-lut). Similar reactions using bidentate chelating ligands give [Pd(Fmes)(L-L)(NCMe)]BF4 (L-L = bipy, tmeda, dppe, OPPhPy2-N,N′, (OH)(CH3)CPy2-N,N′). The complexes trans-[Pd(Fmes)L2(NCMe)]BF4 (L = PPh3, tht) (tht = tetrahydrothiophene) and [Pd(Fmes)(L-L)(NCMe)]BF4 (L-L = bipy, tmeda) were obtained by halide extraction with TlBF4 in CH2Cl2/MeCN from the corresponding neutral halogeno complexes trans-[Pd(Fmes)ClL2] or [Pd(Fmes)Cl(L-L)]. The aqua complex trans-[Pd(Fmes)(OH2)(tht)2]BF4 was isolated from the corresponding acetonitrile complex. Overall, the experimental results on these substitution reactions involving bulky ligands suggest that thermodynamic and kinetic steric effects can prevail affording products or intermediates different from those expected on purely electronic considerations. Thus,water, whether added on purpose or adventitious in the solvent, frequently replaces in part other better donor ligands, suggesting that the smaller congestion with water compensates for the smaller M-OH2 bond energy.  相似文献   

20.
Reaction of 1-(2′-pyridylazo)-2-naphthol (Hpan) with [Ru(dmso)4Cl2] (dmso = dimethylsulfoxide), [Ru(trpy)Cl3] (trpy = 2,2′,2″-terpyridine), [Ru(bpy)Cl3] (bpy = 2,2′-bipyridine) and [Ru(PPh3)3Cl2] in refluxing ethanol in the presence of a base (NEt3) affords, respectively, the [Ru(pan)2], [Ru(trpy)(pan)]+ (isolated as perchlorate salt), [Ru(bpy)(pan)Cl] and [Ru(PPh3)2(pan)Cl] complexes. Structures of these four complexes have been determined by X-ray crystallography. In each of these complexes, the pan ligand is coordinated to the metal center as a monoanionic tridentate N,N,O-donor. Reaction of the [Ru(bpy)(pan)Cl] complex with pyridine (py) and 4-picoline (pic) in the presence of silver ion has yielded the [Ru(bpy)(pan)(py)]+ and [Ru(bpy)(pan)(pic)]+ complexes (isolated as perchlorate salts), respectively. All the complexes are diamagnetic (low-spin d6, S = 0) and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on all the complexes shows a Ru(II)–Ru(III) oxidation on the positive side of SCE. Except in the [Ru(pan)2] complex, a second oxidative response has been observed in the other five complexes. Reductions of the coordinated ligands have also been observed on the negative side of SCE. The [Ru(trpy)(pan)]ClO4, [Ru(bpy)(pan)(py)]ClO4 and [Ru(bpy)(pan)(pic)]ClO4 complexes have been observed to bind to DNA, but they have not been able to cleave super-coiled DNA on UV irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号