首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal properties and morphological development of isothermally crystallized isotactic polypropylene (iPP) blended with nanostructured polyhedral oligomeric silsesquioxane (POSS) molecules at very small loading of POSS were studied with differential scanning calorimeter (DSC), thermal gravimetric analysis, dynamic mechanical analysis, polarized optical microscopy (POM), and wide‐angle X‐ray diffraction (WAXD). The result of DSC indicated that the crystallization rate of iPP increases with the increase in POSS contents during crystallization; moreover, the melting temperature of iPP/POSS nanocomposites slightly decreases, while the heat of fusion increases with the addition of POSS molecules at melting and remelting traces. The storage modulus and thermal stability, respectively, remarkably decrease, while the glass transition temperature of isothermally crystallized iPP/POSS nanocomposites increases slightly with the increase in POSS contents. The morphologies results of WAXD and POM show that the POSS molecules form about 35 nm sized nanocrystals and aggregate to form thread‐like and network structure morphologies, respectively, in the molten state even when the POSS content is very small. These results, therefore, suggest that the interaction force between the POSS molecules should be larger than the force between POSS molecules and iPP matrix; however, those interactions depend on the chain length of functionalized substituents on the POSS cage. Therefore, the POSS molecules aggregate forming nanocrystals and act as an effective nucleating agent for iPP and influence the thermal properties of iPP/POSS nanocomposites due to the shorter chain length of functionalized substituents, methyl, on the POSS cage. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2122–2134, 2006  相似文献   

2.
We report the synthesis and characterization of novel elastomeric nanocomposites containing polyhedral oligomeric silsesquioxanes (POSS) as both the cross‐linker and filler within a polydimethylsiloxane (PDMS) polymer matrix. These polymer composites were prepared through the reaction of octasilane‐POSS (OS‐POSS) with vinyl‐terminated PDMS chains using hydrosilylation chemistry. In addition, larger super‐POSS cross‐linkers, consisting of two pendant hepta(isobutyl)POSS molecules attached to a central octasilane‐POSS core, were also used in the fabrication of the PDMS composites. The chemical incorporation of these POSS cross‐linkers into the PDMS network was verified by solid‐state 1H magic angle spinning NMR. Based on dynamic mechanical analysis, the PDMS nanocomposites prepared with the octafunctional OS‐POSS cross‐linker exhibited enhanced mechanical properties relative to polymer systems prepared with the tetrafunctional TDSS cross‐linker at equivalent loading levels. The observed improvements in mechanical properties can be attributed to the increased dimensionality of the POSS cross‐linker. The PDMS elastomers synthesized from the larger super‐POSS molecule showed improved mechanical properties relative to both the TDSS and OS‐POSS composites due to the increased volume‐fraction of POSS filler in the polymer matrix. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2589–2596, 2009  相似文献   

3.
Hybrid organic–inorganic polymer nanocomposites incorporating polyhedral oligomeric silsesquioxane (POSS) nanoparticles are of increasing interest for high performance materials applications. Octaisobutyl POSS/polypropylene nanocomposites were prepared at varying POSS concentrations via melt blending. The interplay of POSS molecular geometry, composition, and concentration in relation to the tribological, nanomechanical, surface energy, and bulk properties of the nanocomposites were investigated. Ultra‐low friction and enhanced hardness, modulus, and hydrophobicity were observed for the nanocomposite surfaces, with minimal changes in the bulk thermomechanical properties. Parallel AFM, SEM, TEM, and spectroscopic analyses demonstrated significant differences in POSS distribution and aggregation in the surface and the bulk, with preferential segregation of POSS to the surface. Additionally, contact angle studies reveal significant reduction in surface energy and increase in hysteresis with incorporation of POSS nanoparticles. The differences in bulk and surface properties are largely explained by the gradient concentration of POSS in the polymer matrix, driven by POSS/POSS and POSS/polymer interactions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2441–2455, 2007  相似文献   

4.
We report on a new strategy for fabricating well‐defined POSS‐based polymeric materials with and without solvent by frontal polymerization (FP) at ambient pressure. First, we functionalize polyhedral oligomeric silsesquioxane (POSS) with isophorone diisocyanate (IPDI). With these functionalized POSS‐containing isocyanate groups, POSS can be easily incorporated into a poly(N‐methylolacrylamide) (PNMA) matrix via FP in situ. Constant velocity FP is observed without significant bulk polymerization. The morphology and thermal properties of POSS‐based hybrid polymers prepared via FP are comparatively investigated on the basis of scanning electronic microscopy (SEM) and thermogravimetric analysis (TGA). Results show that the as‐prepared POSS‐based polymeric materials exhibit a higher glass transition temperature than that of pure PNMA, ascribing to modified POSS well‐dispersed in these hybrid polymers. Also, the products with different microstructures display different thermal properties. The pure PNMA exhibits a featureless morphology, whereas a hierarchical morphology is obtained for the POSS‐based polymeric materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1136–1147, 2009  相似文献   

5.
Polyhedral oligomeric silsesquioxane (POSS) particles are one of the smallest organosilica nano‐cage structures with high multifunctionality that show both organic and inorganic properties. Until now poly(POSS) structures have been synthesized from beginning with a methacryl‐POSS monomer in free‐radical mechanism with batch‐wise methods that use sacrificial templates or additional multisteps. This study introduces a novel one‐pot synthesis inside a continuous flow, double temperature zone microfluidic reactor where the methodology is based on dispersion polymerization. As a result, spherical monodisperse POSS microparticles were obtained and characterized to determine their morphology, surface chemical structure, and thermal behavior by SEM, FTIR, and TGA, respectively. These results were also compared and reported with the outcomes of batch‐wise synthesis. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1396–1403  相似文献   

6.
A new approach to achieve polymer‐mediated gold ferromagnetic nanocomposites in a polyhedral oligomeric silsesquioxane (POSS)‐containing random copolymer matrix has been developed. Stable and narrow distributed gold nanoparticles modified by 3‐mercaptopropylisobutyl POSS to form Au‐POSS nanoparticles are prepared by two‐phase liquid‐liquid method. These Au‐POSS nanoparticles form partial particle aggregation by blending with poly(n‐butyl methacrylate) (PnBMA) homopolymer because of poor miscibility between Au‐POSS and PnBMA polymer matrix. The incorporation the POSS moiety into the PnBMA main chain as a random copolymer matrix displays well‐dispersed gold nanoparticles because the POSS‐POSS interaction enhances miscibility between gold nanoparticles and the PnBMA‐POSS copolymer matrix. This gold‐containing nanocomposite exhibits ferromagnetic phenomenon at room temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 811–819, 2009  相似文献   

7.
Polyhedral oligomeric silsequioxane (POSS), having eight hydroxyl groups for the preparation of nanocomposites with polyimide (PI) was synthesized by the direct hydrosilylation of allyl alcohol with octasilsesquioxane (Q8M8H) with platinum divinyltetramethyl disiloxane Pt(dvs) as a catalyst. The structure of allyl alcohol terminated‐POSS (POSS‐OH) was confirmed by FTIR, NMR, and XRD. A high performance, low‐k PI nanocomposite from pyromellitic dianhydride (PMDA)‐4,4'‐oxydianiline (ODA) polyamic acid cured with POSS‐OH was also successfully synthesized. The incorporation of POSS‐OH into PI matrix reduced dielectric constant of PI without loosing mechanical properties. Furthermore, the effects of POSS‐OH on the morphology and properties of the PI/POSS‐OH nanocomposites were investigated using UV–vis, FTIR, XRD, SEM, AFM, transmission electron microscope (TEM), TGA, and contact angle. The homogeneous dispersion of POSS particles was confirmed by SEM, AFM, and TEM. The nanoindentation showed that the modulus increased upon increasing the concentration of POSS‐OH in PI, whereas the hardness did not increase very much with respect to loading of POSS, due to soft‐interphase around POSS molecules in the resulting nanocomposites. Overall results demonstrated the nanometer‐level integration of the polymer and POSS‐OH. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5887–5896, 2008  相似文献   

8.
A high‐performance, low‐dielectric‐constant polyimide (PI) nanocomposite from poly(amic acid) (PAA) cured with a reactive fluorine polyhedral oligomeric silsesquioxane (POSS) isomer was successfully synthesized. The features of this reactive fluorine POSS isomer [octakis(dimethylsiloxyhexafluoropropylglycidyl ether)silsesquioxane (OFG)] provided two important approaches (containing fluorine or being porous in the polymer matrix) of reducing the dielectric constant of PI. This reactive POSS isomer had an average of four epoxy groups and four fluorine groups on the POSS cage, and the epoxy groups could be cured with PAA to form a network framework of a PI/POSS nanocomposite. The PI/OFG nanocomposite had a high crosslinking density, high porosity (24.3%), high hydrophobicity, and low polarizability. These properties enhanced the thermal (glass‐transition temperature ~ 362 °C) and dielectric (dielectric constant ~2.30) properties of PI more than other POSS derivatives introduced into the PI backbone. A large number of small POSS particles (<10 nm) were embedded inside the PI matrix when the OFG content was low, whereas interconnected POSS aggregation domains were observed when the OFG content was high. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5391–5402, 2006  相似文献   

9.
The well dispersion of functionalized multi‐walled carbon nanotube (f‐MWCNT) in nylon 6 matrix was prepared by solution mixing techniques. The isothermal and nonisothermal crystallization kinetics of nylon 6 and nylon 6/f‐MWCNT nanocomposites were studied by differential scanning calorimetry (DSC), X‐ray diffraction and polarized optical microscopy analysis. DSC isothermal results revealed that the activation energy of nylon 6 extensively decreased by adding 1 wt % f‐MWCNT into nylon 6, suggesting that the addition of small amount of f‐MWCNT probably induces the heterogeneous nucleation. Nevertheless, the addition of more f‐MWCNT into nylon 6 matrix reduced the transportation ability of polymer chains during crystallization process and thus increased the activation energy. The nonisothermal crystallization of nylon 6/f‐MWCNT nanocomposites was also discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 158–169, 2008  相似文献   

10.
In this article, we describe the structure–property relationships between the polyoctahedral oligomeric silsesquioxane (POSS) fillers and the thermomechanical properties of the polymer composites using polystyrene, poly(methyl methacrylate), and ethylene‐(vinyl acetate) copolymer. We used eight kinds of octa‐substituted aliphatic and aromatic POSS as a filler, and homogeneous polymer composites were prepared with various concentrations of these POSS fillers. From a series of measurements of thermal and mechanical properties of the polymer composites, it was summarized that the longer alkyl chains and unsaturated bonds at the side chains in POSS are favorable to improve the thermal stability and the elasticity of polymer matrices. It was found that phenyl‐POSS can show superior ability to improve the thermomechanical properties of conventional polymers used in this study. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5690–5697, 2009  相似文献   

11.
Nanocomposites composed of a poly(vinylidene fluoride) (PVDF) matrix and 0, 3, 5, and 8 wt % fluoropropyl polyhedral oligomeric silsesquioxane (FP‐POSS) were prepared by using the solvent evaporation method. The morphology and the crystalline phase of the nanocomposites were investigated by digital microscopy, scanning probe microscopy, X‐ray diffractometer, and Fourier transform infrared spectroscopy. FP‐POSS acted as nucleating agent in PVDF matrix. A small content of FP‐POSS resulted in an incomplete nucleation of PVDF and generated bigger spherical particles, whereas higher contents led to a complete nucleation and formed more separate and less‐crosslinked particles. Nanoindentation, nanoscratch, and nanotensile tests were carried out to study the influence of different contents of FP‐POSS on the key static and dynamic mechanical properties of different systems. The nanocomposite with 3 wt % FP‐POSS was found to possess enhanced elastic properties and hardness. However, with the increase of the FP‐POSS content, the elastic modulus and hardness were found to decrease, and the improvement on stiffness was negative at contents of 5 and 8 wt %. Compared with neat PVDF, the scratch resistance of the PVDF/FP‐POSS nanocomposites was decreased due to a rougher surface derived from the bigger spherulites. Nanotensile testing results showed both the stiffness and toughness of PVDF‐FP3% were enhanced and further additions of FP‐POSS brought dramatic enhancements in toughness while associated with a decline in stiffness. Dynamical mechanical properties indicated the viscosity of the nanocomposites increased with the increasing FP‐POSS contents. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

12.
In this study, we investigated the melting and crystallization behavior of polyhedral oligomeric silsesquioxane (POSS)‐capped poly(ε‐caprolactone) PCL with various lengths of PCL chains by means of X‐ray diffraction and differential scanning calorimetry. This organic–inorganic macromolecule possesses a tadpole‐like structure in which the bulky POSS cage is the “head” whereas PCL chain the “tail”. The novel organic–inorganic association result in the significant alterations in the melting and crystallization behavior of PCL. The POSS‐terminated PCL displayed the enhanced equilibrium melting points compared to the control PCL. Both the overall crystallization rate and the spherulitic growth rate of the POSS‐terminated PCLs increased with increasing the concentration of POSS (or with decreasing length of PCL chain in the hybrids). The analysis of Avrami equation shows that the crystallization of the POSS‐terminated PCL preferentially followed the mechanism of spherulitic growth with instantaneous nuclei. It is found that the folding free energy of surface for the POSS‐terminated PCLs decreased with increasing the concentration of POSS. It is found that the folding free energy of surface for the POSS‐terminated PCLs decreased with increasing the concentration of POSS. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2201–2214, 2007  相似文献   

13.
Nylon‐66 nanocomposites were prepared by melt‐compounding nylon‐66 with an alkyl ammonium surfactant pretreated montmorillonite (MMT). The thermal stability of the organic MMT powders was measured by thermogravimetric analysis. The decomposition of the surfactant on the MMT occurred from 200 to 500 °C. The low onset decomposition temperature of the organic MMT is one shortcoming when it is used to prepare polymer nanocomposites at high melt‐compounding temperatures. To provide greater property enhancement and better thermal stability of the polymer/MMT nanocomposites, it is necessary to develop MMT modified with more thermally stable surfactants. The dispersion and spatial distribution of the organic MMT layers in the nylon‐66 matrix were characterized by X‐ray diffraction. The organic MMT layers were exfoliated but not randomly dispersed in the nylon‐66 matrix. A model was proposed to describe the spatial distribution of the organic MMT layers in an injection‐molded rectangular bar of nylon‐66/organic MMT nanocomposites. Most organic MMT layers were oriented in the injection‐molding direction. Layers near the four surfaces of the bar were parallel to their corresponding surfaces; whereas those in the bulk differed from the near‐surface layers and rotated themselves about the injection‐molding direction. The influence of the spatial distribution of the organic MMT on crystallization of nylon‐66 was also investigated. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1234–1243, 2003  相似文献   

14.
Crystallization studies at quiescent and shear states in isotactic polypropylene (iPP) containing nanostructured polyhedral oligomeric silsesquioxane (POSS) molecules were performed with in situ small‐angle X‐ray scattering (SAXS) and differential scanning calorimetry (DSC). DSC was used to characterize the quiescent crystallization behavior. It was observed that the addition of POSS molecules increased the crystallization rate of iPP under both isothermal and nonisothermal conditions, which suggests that POSS crystals act as nucleating agents. Furthermore, the crystallization rate was significantly reduced at a POSS concentration of 30 wt %, which suggests a retarded growth mechanism due to the molecular dispersion of POSS in the matrix. In situ SAXS was used to study the behavior of shear‐induced crystallization at temperatures of 140, 145, and 150 °C in samples with POSS concentrations of 10, 20, and 30 wt %. The SAXS patterns showed scattering maxima along the shear direction, which corresponded to a lamellar structure developed perpendicularly to the flow direction. The crystallization half‐time was calculated from the total scattered intensity of the SAXS image. The oriented fraction, defined as the fraction of scattered intensity from the oriented component to the total scattered intensity, was also calculated. The addition of POSS significantly increased the crystallization rate during shear compared with the rate for the neat polymer without POSS. We postulate that although POSS crystals have a limited role in shear‐induced crystallization, molecularly dispersed POSS molecules behave as weak crosslinkers in polymer melts and increase the relaxation time of iPP chains after shear. Therefore, the overall orientation of the polymer chains is improved and a faster crystallization rate is obtained with the addition of POSS. Moreover, higher POSS concentrations resulted in faster crystallization rates during shear. The addition of POSS decreased the average long‐period value of crystallized iPP after shear, which indicates that iPP nuclei are probably initiated in large numbers near molecularly dispersed POSS molecules. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2727–2739, 2001  相似文献   

15.
11‐(2‐Bromo‐2‐methyl)propionyl‐oxy‐undecyl trichlorosilane atom transfer radical polymerization (ATRP) initiator was covalently attached on montmorillonite clay platelets via silylation reactions. The initiator clay was used to polymerize butyl acrylate (BuA) and methyl methacrylate (MMA) on the clay surface. Polymerization was performed in bulk monomer solution or in DMSO. Polymer modified clay was mixed with a poly(BuA‐co‐MMA) matrix. Small angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM) showed that clay modified in DMSO gave exfoliated composites when mixed with the matrix copolymer. Mechanical properties of the composites were studied by dynamic mechanical thermal analysis (DMTA). The results showed that the mechanical properties were improved as a function of clay content, as well with an increasing homogeneity of the nanocomposite. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3086–3097, 2009  相似文献   

16.
Recently, silsesquioxanes have been recognized as a new group of film‐forming materials. This study has been aimed at determining the effect of the kind of functional groups present in two different open‐cage structure POSS molecules on the possibility of the formation of Langmuir monolayers and their properties. To achieve this goal, two new POSS derivatives (of open‐cage structures) containing polyether and fluoroalkyl functional groups have been synthesized on the basis of a hydrosilylation process. An optimization of the process was performed, which makes it possible to obtain the above‐mentioned derivatives with high yields. In the next step, the Langmuir technique was applied to measurements of the surface pressure (π) ? the mean molecular area (A) isotherms during the compression of monolayers formed by molecules of the two POSS derivatives considered. Subsequently, the monolayers were transferred onto quartz plates according to the Langmuir–Blodgett technique. Both derivatives are able to form insoluble Langmuir films at the air–water interface, which can be transferred onto a solid substrate and effectively change its wetting properties.  相似文献   

17.
The mechanical properties and fire resistance of vinyl ester resin (VER) composites containing cage‐shaped octaphenyl silsesquioxane (OPS), incompletely cage‐shaped phenyl silsesquioxane (PhT7POSS), and ladder‐shaped phenyl silsesquioxane (PPSQ) were investigated. The POSS structure and dispersion have a great influence on the mechanical properties, thermal stability, and decomposition process of VER composites. The bending strength at break and modulus of the VER‐POSS composites were enhanced obviously, especially for VER‐PPSQ composite and VER‐OPS composite, respectively. In addition, PhT7POSS‐based VER composites revealed the lower values of the peak heat release rate, total heat release, and total smoke release in cone calorimetry tests due to the formation of dense carbon/silica protective layers that acted as a barrier to heat and mass transfer. Moreover, the flame‐retardant mechanisms of condensed phase and gas phase were also investigated in detail. These results illustrate VERs modified by OPS, PhT7POSS, and PPSQ are providing an applicable method to fabricate the composites with excellent flame‐retardant and mechanical properties.  相似文献   

18.
3‐Acryloxypropylhepta(3,3,3‐trifluoropropyl) polyhedral oligomeric silsesquioxane (POSS) was synthesized and used as a modifier to improve the thermal response rates of poly(N‐isopropylacrylamide) (PNIPAM) hydrogel. The radical copolymerization among N‐isopropylacrylamide (NIPAM), the POSS macromer and N,N′‐methylenebisacrylamide was performed to prepare the POSS‐containing PNIPAM cross‐linked networks. Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) showed that the POSS‐containing PNIPAM networks displayed the enhanced glass transition temperatures (Tg's) and improved thermal stability when compared with plain PNIPAM network. The POSS‐containing PNIPAM hydrogels exhibited temperature‐responsive behavior as the plain PNIPAM hydrogels. It is noted that with the moderate contents of POSS, the POSS‐containing PNIPAM hydrogels displayed much faster response rates in terms of swelling, deswelling, and re‐swelling experiments than plain PNIPAM hydrogel. The improved thermoresponsive properties of hydrogels have been interpreted on the basis of the formation of the specific microphase‐separated morphology in the hydrogels, that is, the POSS structural units in the hybrid hydrogels were self‐assembled into the highly hydrophobic nanodomains, which behave as the microporogens and promote the contact of PNIPAM chains and water. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 504–516, 2009  相似文献   

19.
The nylon 1010/ethylene‐vinyl acetate rubber (EVM)/maleated ethylene‐vinyl acetate copolymers (EVA‐g‐MAH) ternary blends were prepared. The effect of EVM/EVA‐g‐MAH ratio on the toughness of blends was examined. A super tough nylon 1010 blends were obtained by the incorporation of both EVM and EVA‐g‐MAH. Impact essential work of fracture (EWF) model was used to characterize the fracture behavior of the blends. The nylon/EVM/EVA‐g‐MAH (80/15/5) blend had the highest total fracture energy at a given ligament length (5 mm) and the highest dissipative energy density among all the studied blends. Scanning electron microscopy images showed the EVM and EVA‐g‐MAH existed as spherical particles in nylon 1010 matrix and their size decreased gradually with increasing EVA‐g‐MAH content. Large plastic deformation was observed on the impact fracture surface of the nylon/EVM/EVA‐g‐MAH (80/15/5) blend and related to its high impact strength. Then with increasing EVA‐g‐MAH proportion, the matrix shear yielding of nylon/EVM/EVA‐g‐MAH blends became less obvious. EVM and EVA‐g‐MAH greatly increased the apparent viscosity of nylon 1010, especially at low shear rates. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 877–887, 2009  相似文献   

20.
We synthesized an AB2‐type monomer, 4‐{4‐[di(4‐aminophenyl)methyl]phenoxy}phthalic acid, which contained one phthalic acid group and two aminophenyl functionalities. The direct self‐polycondensation of the AB2‐type monomer in the presence of triphenylphosphite as an activator afforded a hyperbranched poly(ether imide) with a large number of terminal amino groups. This polymer was characterized with 1H NMR and IR spectroscopy. The degree of branching of the hyperbranched poly(ether imide) was approximately 56%, as determined by a combination of model compound studies and an analysis of 1H NMR spectroscopy integration data. The terminal amino groups underwent functionalization readily. The solubility and thermal properties of the resulting polymers depended on the nature of the chain end groups. In addition, the hyperbranched poly(ether imide) was grafted with polyhedral oligomeric silsesquioxane (POSS). Transmission electron microscopy analysis revealed that the grafted POSS molecules aggregated to form a nanocomposite material. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3726–3735, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号