首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recently, it is found that telegraph equation is more suitable than ordinary diffusion equation in modelling reaction diffusion for such branches of sciences. In this article, we propose a numerical scheme to solve the one‐dimensional hyperbolic telegraph equation using collocation points and approximating the solution using thin plate splines radial basis function. The scheme works in a similar fashion as finite difference methods. The results of numerical experiments are presented, and are compared with analytical solutions to confirm the good accuracy of the presented scheme. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

2.
This article discusses on the solution of the regularized long wave (RLW) equation, which is introduced to describe the development of the undular bore, has been used for modeling in many branches of science and engineering. A numerical method is presented to solve the RLW equation. The main idea behind this numerical simulation is to use the collocation and approximating the solution by radial basis functions (RBFs). To avoid solving the nonlinear system, a predictor‐corrector scheme is proposed. Several test problems are given to validate the new technique. The numerical simulation, includes the propagation of a solitary wave, interaction of two positive solitary waves, interaction of a positive and a negative solitary wave, the evaluation of Maxwellian pulse into stable solitary waves and the development of an undular bore. The three invariants of the motion are calculated to determine the conservation properties of the algorithm. The results of numerical experiments are compared with analytical solution and with those of other recently published methods to confirm the accuracy and efficiency of the presented scheme.© 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

3.
In this article, we propose a numerical scheme to solve the one‐dimensional undamped Sine‐Gordon equation using collocation points and approximating the solution using Thin Plate Splines (TPS) radial basis function (RBF). The scheme works in a similar fashion as finite difference methods. The results of numerical experiments are presented and are compared with analytical solutions to confirm the good accuracy of the presented scheme.© 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

4.
In the current article, we investigate the RBF solution of second‐order two‐space dimensional linear hyperbolic telegraph equation. For this purpose, we use a combination of boundary knot method (BKM) and analog equation method (AEM). The BKM is a meshfree, boundary‐only and integration‐free technique. The BKM is an alternative to the method of fundamental solution to avoid the fictitious boundary and to deal with low accuracy, singular integration and mesh generation. Also, on the basis of the AEM, the governing operator is substituted by an equivalent nonhomogeneous linear one with known fundamental solution under the same boundary conditions. Finally, several numerical results and discussions are demonstrated to show the accuracy and efficiency of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In this article, we introduce a high‐order accurate method for solving one‐space dimensional linear hyperbolic equation. We apply a compact finite difference approximation of fourth order for discretizing spatial derivative of linear hyperbolic equation and collocation method for the time component. The main property of this method additional to its high‐order accuracy due to the fourth order discretization of spatial derivative, is its unconditionally stability. In this technique the solution is approximated by a polynomial at each grid point that its coefficients are determined by solving a linear system of equations. Numerical results show that the compact finite difference approximation of fourth order and collocation method produce a very efficient method for solving the one‐space‐dimensional linear hyperbolic equation. We compare the numerical results of this paper with numerical results of (Mohanty, 3 .© 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

6.
In this study, we developed the methods based on nonpolynomial cubic spline for numerical solution of second‐order nonhomogeneous hyperbolic partial differential equation. Using nonpolynomial cubic spline in space and finite difference in time directions, we obtained the implicit three level methods of O(k2 + h2) and O(k2 + h4). The proposed methods are applicable to the problems having singularity at x = 0, too. Stability analysis of the presented methods have been carried out. The presented methods are applied to the nonhomogeneous examples of different types. Numerical comparison with Mohanty's method (Mohanty, Appl Math Comput, 165 (2005), 229–236) shows the superiority of our presented schemes. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

7.
In this paper, we present a meshfree technique for the numerical solution of the regularized long wave (RLW) equation. This approach is based on a global collocation method using the radial basis functions (RBFs). Different kinds of RBFs are used for this purpose. Accuracy of the new method is tested in terms of L2L2 and LL error norms. In case of non-availability of the exact solution, performance of the new method is compared with existing methods. Stability analysis of the method is established. Propagation of single and double solitary waves, wave undulation, and conservation properties of mass, energy and momentum of the RLW equation are discussed.  相似文献   

8.
The inverse problem of finding the coefficients q(s) and p(s) in the equation u tt = a 2 u xx + q(u)u t ? p(u)u x is investigated. As overdetermination required in the inverse setting, two additional conditions are set: a boundary condition and a condition with a fixed value of the timelike variable. An iteration method for solving the inverse problem is proposed based on an equivalent system of integral equations of the second kind. A uniqueness theorem and an existence theorem in a small domain are proved for the inverse problem to substantiate the convergence of the algorithm.  相似文献   

9.
In this paper, the numerical solution of the generalized Kuramoto-Sivashinsky equation is presented by meshless method of lines (MOL). In this method the spatial derivatives are approximated by radial basis functions (RBFs) giving an edge over finite difference method (FDM) and finite element method (FEM) because no mesh is required for discretization of the problem domain. Only a set of scattered nodes is required to approximate the solution. The numerical results in comparison with exact solution using different radial basis functions (RBFs) prove the efficiency and accuracy of the method.  相似文献   

10.
In this article, we introduce a high‐order accurate method for solving the two dimensional linear hyperbolic equation. We apply a compact finite difference approximation of fourth order for discretizing spatial derivatives of linear hyperbolic equation and collocation method for the time component. The resulted method is unconditionally stable and solves the two‐dimensional linear hyperbolic equation with high accuracy. In this technique, the solution is approximated by a polynomial at each grid point that its coefficients are determined by solving a linear system of equations. Numerical results show that the compact finite difference approximation of fourth order and collocation method give a very efficient approach for solving the two dimensional linear hyperbolic equation. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

11.
The local Hermitian interpolation (LHI) method is a strong‐form meshless numerical technique in which the solution domain is covered by a series of small and heavily overlapping radial basis function (RBF) interpolation systems. Aside from its meshless nature and the ability to work on very large scattered datasets, the main strength of the LHI method lies in the formation of local interpolations, which themselves satisfy both boundary and governing PDE operators, leading to an accurate and stable reconstruction of partial derivatives without the need for artificial upwinding or adaptive stencil selection. In this work, an extension is proposed to the LHI formulation which allows the accurate capture of solution profiles across discontinuities in governing equation parameters. Continuity of solution value and mass flux is enforced between otherwise disconnected interpolation systems, at the location of the discontinuity. In contrast to other local meshless methods, due to the robustness of the Hermite RBF formulation, it is possible to impose both matching conditions simultaneously at the interface nodes. The procedure is demonstrated for 1D and 3D convection–diffusion problems, both steady and unsteady, with discontinuities in various PDE properties. The analytical solution profiles for these problems, which experience discontinuities in their first derivatives, are replicated to a high degree of accuracy. The technique has been developed as a tool for solving flow and transport problems around geological layers, as experienced in groundwater flow problems. The accuracy of the captured solution profiles, in scenarios where the local convective velocities exceed those typically encountered in such Darcy flow problems, suggests that the technique is indeed suitable for modeling discontinuities in porous media properties. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1201–1230, 2011  相似文献   

12.
In this article, we combine the compactly supported radial basis function (RBF) collocation method and the scaling iterative algorithm to compute and visualize the multiple solutions of the Lane‐Emden‐Fowler equation on a bounded domain Ω ? R2 with a homogeneous Dirichlet boundary condition. This novel method has the advantage over traditional methods, which approximate the spatial derivatives using either the finite difference method (FDM), the finite element method (FEM), or the boundary element method (BEM), because it does not require a mesh over the domain. As a result, it needs less computational time than the globally supported RBF collocation method. When compared with the reference solutions in (Chen, Zhou, and Ni, Int J Bifurcation Chaos 10 (2000), 565–1612), our numerical results demonstrate the accuracy and ease of implementation of this method. It is therefore much more suitable for dealing with the complex domains than the FEM, the FDM, and the BEM. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 554‐572, 2012  相似文献   

13.
The nonlinear Klein–Gordon equation is used to model many nonlinear phenomena. In this paper, we propose a numerical scheme to solve the one-dimensional nonlinear Klein–Gordon equation with quadratic and cubic nonlinearity. Our scheme uses the collocation points and approximates the solution using Thin Plate Splines (TPS) radial basis functions (RBF). The implementation of the method is simple as finite difference methods. The results of numerical experiments are presented, and are compared with analytical solutions to confirm the good accuracy of the presented scheme.  相似文献   

14.
In this paper, we employ the boundary-only meshfree method to find out numerical solution of the classical Boussinesq equation in one dimension. The proposed method in the current paper is a combination of boundary knot method and meshless analog equation method. The boundary knot technique is an integration free, boundary-only, meshless method which is used to avoid the known disadvantages of the method of fundamental solution. Also, we use the meshless analog equation method to replace the nonlinear governing equation with an equivalent nonhomogeneous linear equation. A predictor-corrector scheme is proposed to solve the resulted differential equation of the collocation. The numerical results and conclusions are obtained for both the ‘good’ and the ‘bad’ Boussinesq equations.  相似文献   

15.
In this article, an iterative method is proposed for solving nonlinear hyperbolic telegraph equation with an integral condition. Its exact solution is represented in the form of series in the reproducing kernel space. In the mean time, the n‐term approximation un(x, t) of the exact solution u(x, t) is obtained and is proved to converge to the exact solution. Moreover, the partial derivatives of un(x, t) are also convergent to the partial derivatives of u(x, t). Some numerical examples have been studied to demonstrate the accuracy of the present method. Results obtained by the method have been compared with the exact solution of each example and are found to be in good agreement with each other. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 867–886, 2011  相似文献   

16.
Differentiation matrices associated with radial basis function (RBF) collocation methods often have eigenvalues with positive real parts of significant magnitude. This prevents the use of the methods for time‐dependent problems, particulary if explicit time integration schemes are employed. In this work, accuracy and eigenvalue stability of symmetric and asymmetric RBF collocation methods are numerically explored for some model hyperbolic initial boundary value problems in one and two dimensions. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

17.
In this paper, radial basis function (RBFs) based mesh-free method is implemented to find numerical solution of the Kuramoto-Sivashinsky equations. This approach has an edge over traditional methods such as finite-difference and finite element methods because it does not require a mesh to discretize the problem domain, and a set of scattered nodes in the domain of influence provided by initial data is required for the realization of the method. The accuracy of the method is assessed in terms of the error norms L2,L, number of nodes in the domain of influence, free parameter, dependent parameter RBFs and time step length. Numerical experiments demonstrate accuracy and robustness of the method for solving a class of nonlinear partial differential equations.  相似文献   

18.
Nonlocal mathematical models appear in various problems of physics and engineering. In these models the integral term may appear in the boundary conditions. In this paper the problem of solving the one‐dimensional parabolic partial differential equation subject to given initial and nonlocal boundary conditions is considered. These kinds of problems have certainly been one of the fastest growing areas in various application fields. The presence of an integral term in a boundary condition can greatly complicate the application of standard numerical techniques. As a well‐known class of meshless methods, the radial basis functions are used for finding an approximation of the solution of the present problem. Numerical examples are given at the end of the paper to compare the efficiency of the radial basis functions with famous finite‐difference methods. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

19.
This article discusses the use of radial basis functions in the solution of partial differential equations. In particular, an investigation of how to implement boundary conditions at material interfaces is presented. A comparison is made of solutions obtained using only radial basis functions with those obtained using either jump functions or elliptical functions in conjunction with standard radial basis functions. The purpose of adding either jump functions or elliptical functions is to alleviate the inaccurate handling of the boundary conditions at material interfaces. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

20.
In this paper, we apply the boundary integral equation technique and the dual reciprocity boundary elements method (DRBEM) for the numerical solution of linear and nonlinear time‐fractional partial differential equations (TFPDEs). The main aim of the present paper is to examine the applicability and efficiency of DRBEM for solving TFPDEs. We employ the time‐stepping scheme to approximate the time derivative, and the method of linear radial basis functions is also used in the DRBEM technique. This method is improved by using a predictor–corrector scheme to overcome the nonlinearity that appears in the nonlinear problems under consideration. To confirm the accuracy of the new approach, several examples are presented. The convergence of the DRBEM is studied numerically by comparing the exact solutions of the problems under investigation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号