首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel pathway for cytosine to uracil conversion performed in a micellar environment, leading to the generation of uridine monophosphate (UMP), was evidenced during the alkylation reaction of cytidine monophosphate (CMP) by dodecyl epoxide. Liquid chromatography‐electrospray ionization – ion trap ‐ mass spectrometry was used to separate and identify the reaction products and to follow their formation over time. The detection of hydroxy‐amino‐dodecane, concurrently with free UMP, in the reaction mixture suggested that, among the various alkyl‐derivatives formed, CMP alkylated on the amino group of cytosine could undergo tautomerization to an imine and hydrolytic deamination, generating UMP. Interestingly, no evidence for this peculiar conversion pathway was obtained when guanosine monophosphate (GMP), the complementary ribonucleotide of CMP, was also present in the reaction mixture, due to the fact that NH2‐alkylated CMP was not formed in this case. The last finding emphasized the role played by CMP–GMP molecular interactions, mediated by a micellar environment, in hindering the alkylation reaction at the level of the cytosine amino group. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
The mass spectrometric behavior of four pairs of stereoisomers was investigated by liquid chromatography–electrospray ionization–mass spectrometry (LC–ESI–MS). The E‐ and Z‐isomers of the pesticides chlorfenvinphos, dimethomorph, mevinphos and phosphamidon—each with one double bond—were chosen for this study. The MS response of the individual isomers was investigated by infusing the isomers individually into the MS or after the separation of isomer mixtures via high‐performance liquid chromatography(HPLC). In the case of dimethomorph, the same MS response was found for the two isomers. In contrast to that, the individual isomers of chlorfenvinphos, mevinphos and phosphamidon showed different MS response both in the single ion monitoring (SIM) mode in single quadrupole MS and multiple reaction monitoring (MRM) mode in tandem MS. The MS response of the isomers partly depends on (1) the declustering potential of the precursor ion in the SIM mode, (2) the selected transition and (3) the collision energy in the MRM mode. Consequently, quantification by summation of the peak areas of the isomers is inaccurate due to over‐ or underestimating of one of the stereoisomers. Accurate quantitative results can only be achieved when the compound‐specific MS parameters are separately determined for each isomer. This can be done by using pure isomers or by the determination of the MS parameters after HPLC separation and the measurement of the actual isomer ratio with an independent technique. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
A sensitive high‐performance liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for measuring vinorelbine was developed. A 100 µL aliquot of plasma was spiked with deuterium‐labeled internal standard and subjected to solid‐phase extraction using an Oasis HLB μ‐elution plate. Two microliters of the extracted samples was directly injected into LC/MS/MS. Chromatographic separation was achieved on a Capcell Pak C18 UG column (2 × 75 mm) with a gradient elution of methanol (mobile phase B) against 0.05% formic acid in aqueous 10 mm ammonium formate (mobile phase A). The LC flow rate was set to 0.28 mL/min and the gradient (solvent B concentration) was processed from 40 to 90%. In mass spectrometric detection, observation of the reaction from a double‐charged precursor ion [M + 2H]2+ (m/z 390) to product ion m/z 122 provided very high sensitivity. The method was validated with a lower limit of detection of 0.2 ng/mL with 0.1 mL of plasma, and the method was used to determine the plasma pharmacokinetics of vinorelbine in dogs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Due to the varying toxicity the species of organotins in their widespread applications, it is important for analytical methods to address their speciation. Traditional methods call for the hydrolysis and subsequent derivatization of the organotins before analysis. These methods can be time‐consuming, derivatization can be incomplete and high levels of background interference produce difficulties in identification and quantification. The use is described of a non‐derivatization and non‐hydrolysis micro‐liquid chromatography–electrospray/ion trap mass spectrometry for separation and detection of the organotins. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
Methylation is an essential metabolic process for a number of critical reactions in the body. Methyl groups are involved in the healthy function of the body life processes, by conducting methylation process involving specific enzymes. In these processes, various amino acids are methylated, and the occurrence of methylated amino acids in nature is diverse. Nowadays, mass‐spectrometric‐based identification of small molecules as biomarkers for diseases is a growing research. Although all dimethyl amino acids are metabolically important molecules, mass spectral data are available only for a few of them in the literature. In this study, we report synthesis and characterization of all dimethyl amino acids, by electrospray ionization–tandem mass spectrometry (MS/MS) experiments on protonated molecules. The MS/MS spectra of all the studied dimethyl amino acids showed preliminary loss of H2O + CO to form corresponding immonium ions. The other product ions in the spectra are highly characteristic of the methyl groups on the nitrogen and side chain of the amino acids. The amino acids, which are isomeric and isobaric with the studied dimethyl amino acids, gave distinctive MS/MS spectra. The study also included MS/MS analysis of immonium ions of dimethyl amino acids that provide information on side chain structure, and it is further tested to determine the N‐terminal amino acid of the peptides. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Initiation by tert‐butyl peroxypivalate (TBPP), tert‐amyl peroxypivalate (TAPP), 1,1,3,3‐tetramethylbutyl peroxypivalate (TMBPP), or 1,1,2,2‐tetramethylpropyl peroxypivalate (TMPPP) of radical polymerization of methyl methacrylate in toluene solution at 90 °C was studied via polymer end‐group analysis using electrospray ionization mass spectrometry (ESI‐MS). Conclusive peak assignments allowed for measuring the type and concentration of the fragments that actually initiate macromolecular growth after thermal decomposition of these peroxypivalates. It was found that the pivaloyloxy radical moiety undergoes instantaneous decarboxylation to yield an initiating tert‐butyl radical. The alkoxy radical moiety, on the other hand, may generate, via β‐scission reaction, different types of carbon‐centered radicals (together with a ketone) or may undergo a 1,5‐H‐shift reaction, by which reaction an oxygen‐centered radical is transformed into a carbon‐centered hydroxy radical. This hydrogen shift reaction was found in case of TMBPP. Surprisingly, no evidence for initiating alkoxy radicals could be found, not even in case of initiation by TBPP, where the intermediate tert‐butoxy radical undergoes a rapid chain‐transfer reaction with the solvent toluene. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4266–4275, 2004  相似文献   

7.
Peroxidation catalysed by Soybean Lypoxigenase was performed on tetralinoleyl-cardiolipin with the aim of generating selectively oxidized products, to be used subsequently as standards for studies on cardiolipin oxidation. The reaction products were characterized by LC-ESI-MS and MS/MS, and the process was found to link a hydroperoxylic group on one or more linoleic chains of cardiolipin, up to a total of four groups per molecule. Interestingly, the incidence of other oxidized products, like those arising from multiple hydroxylation or mixed hydroxylation-hydroperoxydation, previously observed after the chemical oxidation of the same cardiolipin, was found to be negligible. Moreover, evidences for the presence of the hydroperoxylic group(s) almost exclusively on carbon 13 of the linoleic chain(s) were obtained by MS/MS measurements. The enzymatic approach, integrated with a preparative separation step, which could be developed by adapting the chromatographic conditions adopted in the present work for analytical purposes, represents a promising strategy for the synthesis of highly specific mono- or multi-peroxidated derivatives of cardiolipins.  相似文献   

8.
In the search for novel natural products in plants, particularly those with potential bioactivity, it is important to efficiently distinguish novel compounds from previously isolated, known compounds, a process known as dereplication. In this study, electrospray ionization‐multiple stage tandem mass spectrometry (ESI‐MSn) was used to study the behaviour of 12 pregnane glycosides and genins previously isolated from Marsdenia tenacissima, a traditional Chinese medicinal plant, as a basis for dereplication of compounds in a plant extract. In addition to [M + Na]+ and [M + NH4]+ ions, a characteristic [M‐glycosyl + H]+ ion was observed in full‐scan mode with in‐source fragmentation. Sequential in‐trap collision‐induced dissociation of [M + Na]+ ions from 11,12‐diesters revealed consistent preferred losses of substituents first from C‐12, then from C‐11, followed by losses of monosaccharide fragments from the C‐3 tri‐ and tetrasaccharide substituents. A crude methanol extract of M. tenacissima stems was analysed using high‐performance liquid chromatography coupled to ESI‐MS. Several previously isolated pregnane glycosides were dereplicated, and the presence of an additional nine novel pregnane glycosides is predicted on the basis of the primary and fragment ions observed, including two with a previously unreported C4H7O C‐11/C‐12 substituent of pregnane glycosides. This study is the first report of prediction of the structures of novel pregnane glycosides in a crude plant extract by a combination of in‐source fragmentation and in‐trap collision‐induced dissociation and supports the usefulness of LC‐ESI‐MSn not only for dereplication of active compounds in extracts of medicinal plants but also for detecting the presence of novel related compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A mass spectrometric-based procedure for anthocyanin profiling was set up to distinguish authentic Vitis vinifera from hybrid red grapevine cultivars. 3-O-Monoglucoside and the related acetyl-, p-coumaryl- and caffeoyl-monoglucoside anthocyanins occurred only in Vitis vinifera, whereas 3,5-O-diglucoside and the substituted acetyl-, p-coumaryl-, feruloyl- and caffeoyl-diglucoside anthocyanins were the additional pigments in hybrid grapevines. The procedure was applied expressly to identify red grape cultivars based on the anthocyanin chemo-type determination. In particular, a red grape cultivar, having 3,5-O-diglucoside anthocyanins and a novel class of anthocyanin monoglucosides, such as cyanidin-3-O-, cyanidin-3-O-(6-O-acetyl)- and cyanidin-3-O-(6-O-p-coumaryl)pentoside, was classified as hybrid. A second vine cultivar, characterized exclusively by 3-O-monoglucoside anthocyanins, was included among the Vitis vinifera species. Anthocyanin profiling by mass spectrometry could represent the core of a chemotaxonomic procedure for distinguishing American and European grapevines based on the identification of post-synthetic anthocyanidin modification.  相似文献   

10.
A simple and sensitive liquid chromatography-tandem mass spectrometry method was developed and validated for determining domperidone in human plasma. The analyte and internal standard (IS; mosapride) were isolated from plasma samples by protein precipitation with methanol (containing 0.1% formic acid). The chromatographic separation was performed on an Xterra MS C(18) Column (2.1 x 150 mm, 5.0 microm) with a gradient programme mobile phase consisting of 0.1% formic acid and acetonitrile at a flow rate of 0.30 mL/min. The total run time was 4.0 min. The analyses were carried out by multiple reaction monitoring using the parent-to-daughter combinations m/z 426 --> 175 and m/z 422 --> 198 (IS). The areas of peaks from the analyte and IS were used for quantification of domperidone. The method was validated according to the FDA guidelines on bioanalytical method validation. Validation results indicated that the lower limit of quantification was 0.2 ng/mL, and the assay exhibited a linear range of 0.2-60.0 ng/mL and gave a correlation coefficient (r(2)) of 0.999 or better. Quality control samples (0.4, 0.8, 15 and 50 ng/mL) in six replicates from three different analytical runs demonstrated an intra-assay precision (RSD) 4.43-6.26%, an inter-assay precision 5.25-7.45% and an overall accuracy (relative error) of <6.92%. The method can be applied to pharmacokinetic and bioequivalence studies of domperidone.  相似文献   

11.
The relationships between the ionization profile, sensitivity, and structures of 64 exogenous anabolic steroids (groups I–IV) was investigated under electrospray ionization (ESI) conditions. The target analytes were ionized as [M + H]+ or [M + H–nH2O]+ in the positive mode, and these ions were used as precursor ions for selected reaction monitoring analysis. The collision energy and Q3 ions were optimized based on the sensitivity and selectivity. The limits of detection (LODs) were 0.05–20 ng/mL for the 64 steroids. The LODs for 38 compounds, 14 compounds and 12 compounds were in the range of 0.05–1, 2–5 and 10–20 ng/mL, respectively. Steroids including the conjugated keto‐functional group at C3 showed good proton affinity and stability, and generated the [M + H]+ ion as the most abundant precursor ion. In addition, the LODs of steroids using the [M + H]+ ion as the precursor ion were mostly distributed at low concentrations. In contrast, steroids containing conjugated/unconjugated hydroxyl functional groups at C3 generated [M + H ? H2O]+ or [M + H ? 2H2O]+ ions, and these steroids showed relatively high LODs owing to poor stability and multiple ion formation. An LC‐MS/MS method based on the present ionization profile was developed and validated for the determination of 78 steroids (groups I–V) in human urine. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A novel, sensitive and specific method for the quantitative determination of ivermectin B(1a) in animal plasma using liquid chromatography combined with positive electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) is presented. Abamectin was used as the internal standard. Extraction of the samples was performed with a deproteinization step using acetonitrile. Chromatographic separation was achieved on a Nucleosil ODS 5 microm column, using gradient elution with 0.2% (v/v) acetic acid in water and 0.2% (v/v) acetic acid in acetonitrile. The method was validated according to the requirements defined by the European Community. Calibration curves using plasma fortified between 1 and 100 ng ml(-1) showed a good linear correlation (r > or = 0.9989, goodness-of-fit coefficient < or =8.1%). The trueness at 2 and 25 ng ml(-1) (n = 6) was +4.2 and -17.1%, respectively. The trueness and between-run precision for the analysis of quality control samples at 25 ng ml(-1) was -4.0 and 11.0%, respectively (n = 16). The limit of quantification of the method was 1.0 ng ml(-1), for which the trueness and precision also fell within acceptable limits. Using a signal-to-noise ratio of 3 : 1, the limit of detection was calculated to be 0.2 ng ml(-1). The specificity was demonstrated with respect to ivermectin B(1b).The method was successfully used for the quantitative determination of ivermectin B(1a) in plasma samples from treated bovines, demonstrating the usefulness of the developed method for application in the field of pharmacokinetics.  相似文献   

13.
A method for the quantification of clindamycin in animal plasma using high-performance liquid chromatography combined with electrospray ionization mass spectrometry (LC/ESI-MS/MS) is presented. Lincomycin is used as the internal standard. The sample preparation includes a simple deproteinization step with trichloroacetic acid. Chromatographic separation is achieved on an RP-18 Hypersil column using gradient elution with 0.01 M ammonium acetate and acetonitrile as mobile phase. Good linearity was observed in the range 0-10 microg ml(-1). The limit of quantification of the method is 50 ng ml(-1) and the limit of detection is 1.3 ng ml(-1). The method was shown out to be of use for pharmacokinetic studies of clindamycin formulations in dogs.  相似文献   

14.
Identifying the Cys residues involved in disulfide linkages of peptides and proteins that contain complex disulfide bond patterns is a significant analytical challenge. This is especially true when the Cys residues involved in the disulfide bonds are closely spaced in the primary sequence. Peptides and proteins that contain free Cys residues located near disulfide bonds present the additional problem of disulfide shuffling via the thiol-disulfide exchange reaction. In this paper, we report a convenient method to identify complex disulfide patterns in peptides and proteins using liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) in combination with partial reduction by tris(2-carboxyethyl)phosphine (TCEP). The method was validated using well-characterized peptides and proteins including endothelin, insulin, alpha-conotoxin SI and immunoglobulin G (IgG2a, mouse). Peptide or protein digests were treated with TCEP in the presence of an alkylation reagent, maleimide-biotin (M-biotin) or N-ethylmaleimide (NEM), followed by complete reduction with dithiothreitol and alkylation by iodoacetamide (IAM). Subsequently, peptides that contained alkylated Cys were analyzed by capillary LC/ESI-MS/MS to determine which Cys residues were modified with M-biotin/NEM or IAM. The presence of the alkylating reagent (M-biotin or NEM) during TCEP reduction was found to minimize the occurrence of the thiol-disulfide exchange reaction. A critical feature of the method is the stepwise reduction of the disulfide bonds and the orderly, sequential use of specific alkylating reagents.  相似文献   

15.
A new method for the rapid and simultaneous detection of ketamine and its major metabolite, norketamine, in rat hair has been developed by combining micropulverized extraction and ultraperformance liquid chromatography–electrospray ionization mass spectrometry. By using reversed‐phase UPLC, ketamine and norketamine were well separated within 2 min. Using ketamine‐dosed rat hair, the conditions for micropulverized extraction were optimized, and the limits of detection and quantification of the developed method were found to be 1.7 and 5.7 pg/mg hair for ketamine, respectively. The precisions achieved with this method were slightly better than that obtained with conventional acidic methanol extraction method. Using this proposed method, analysis of the washed rat hair could be completed within 16–17 min. This method is expected to be applied for the analysis of the hair samples of not only rats but also ketamine abusers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Detection of pesticide residues in food samples is important for safeguarding food quality and safety. Conventional approaches for detection of pesticides in food samples typically involve labour‐intensive and time‐consuming sample pretreatment and chromatographic separation. In this study, solid phase micro‐extraction fibres were used to rapidly extract and enrich pesticides in honey, a popular agricultural product with complex matrix, and then directly coupled with electrospray ionization mass spectrometry for qualitative and quantitative analysis. Three pesticides, ie, atrazine, benalaxyl, and pirimicarb, were investigated using the technique and their analytical performances were evaluated. The limits of detection and limits of quantitation of all the three pesticides could fulfil the cut‐off values of the international standard. Linear calibration curves were constructed with good R2 coefficients, and the accuracy and precision were in acceptable ranges for all the pesticides. The analysis time is much reduced, with only minimum sample preparation and no chromatographic separation involved. The technique is simple and easy to set up, and can be extended for analysis of other analytes and sample systems.  相似文献   

17.
The aim of this study was to develop a rapid and sensitive method for the quantification of cefquinome in animal plasma and bronchoalveolar lavage (BAL) fluid using high-performance liquid chromatography combined with electrospray tandem mass spectrometry (LC-ESI-MS/MS). Cefadroxil is used as internal standard. For plasma, the sample preparation includes a simple deproteinization step with a Microcon filter. This allows detecting the unbound cefquinome concentration, which is correlated with the concentration in other body fluids, such as BAL fluid. To be able to detect the total plasma concentration, deproteinization with acetonitrile, followed by a back-extraction of actonitrile with dichloromethane was performed. The BAL fluid is centrifuged to precipitate floating particles. Chromatographic separation is achieved on a PLRP-S column using 0.005% formic acid and methanol as mobile phase. For plasma, good linearity was observed in the range of 5-2500 ng ml(-1) for both the unbound and total concentration. The response in BAL fluid was linear in the range of 4-1000 ng ml(-1). The limit of quantification (LOQ) was set at 5.00 ng ml(-1) for plasma and at 4.00 ng ml(-1) for BAL fluid. The limit of detection (LOD) was 3.12 ng ml(-1) and 0.41 ng ml(-1) for the unbound and total concentration in plasma, respectively, and was 1.43 ng ml(-1) for BAL fluid. The method was shown to be of use in a pharmacokinetic study in pigs, where the correlation between cefquinome concentrations in plasma and BAL fluid of pigs was studied.  相似文献   

18.
Triacylglycerols (TAGs) provide a challenge for mass spectrometry (MS) analysis because of their complexity. In particular, for dietary, nutritional and metabolic purposes, the positional placement of fatty acids on the glycerol backbone of TAGs is a crucial aspect. To solve this problem, we have investigated the TAGs' fragmentation patterns using an ion trap mass spectrometer. A series of pure regioisomeric pairs of TAGs (POP/PPO, POO/OPO and OSO/SOO) were cationized by Ag+ after their separation by non‐aqueous reversed‐phase liquid chromatography (NARP‐LC) before MS to improve MS sensitivity. Electrospray ionization–MS (ESI‐MS) conditions were optimized in order to produce characteristic [M + Ag + AgNO3]+ ions from each TAG, which were then fragmented to produce MS/MS spectra and then fragmented further to produce up to MS5 spectra. The observation of ions produced by LC‐MS5 of on‐line Ag+‐cationized TAG provided unambiguous information on the fatty acid distribution on the glycerol backbone. These strategies of MS to MS5 experiments were applied to identify components and to determine the regiospecificity of TAG within a complex mixture of lipids in natural oils. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A simple and sensitive liquid chromatography‐tandem mass spectrometry (LC–MS/MS) method has been developed and validated for the quantitation of exemestane (Exe) and its main metabolite 17‐dihydroexemestane (DhExe) in human plasma. The analytes were extracted by protein precipitation with acetonitrile, containing stable 13C‐labelled Exe (13C3‐Exe) as internal standard, and measured by LC–MS/MS. The best chromatographic separationof the analytes from the interferences was achieved by using a Phenyl column operating under isocratic regime conditions. The total chromatographic runtime was 5.0 min and the elution of Exe and DhExe occurred at 2.5 min and 2.9 min, respectively. Quantitation was performed by employing the positive electrospray ionization (ESI) technique and multiple reaction monitoring mode (MRM). The monitored precursor to product‐ion transitions for Exe, DhExe and 13C3‐Exe internal standard were m/z 297.0 → 120.8, m/z 299.1 → 134.9 and m/z 300.0 → 123.2, respectively. The lower limit of quantitation (LLOQ) was 0.1 ng/ml for DhExe and 0.2 ng/ml for Exe. The method was linear up to 36–51 ng/ml with r2 ≥ 0.998. The intra‐ and inter‐assay precision were ≤7.7% and 5.1% for Exe and ≤8.1 and 4.9% for DhExe while deviations from nominal values were in the 1.5–13.2% and ? 9.0–5.8% ranges for Exe and DhExe, respectively. The analytical method resulted robust and suitable for pharmacokinetic monitoring of Exe and its main metabolite during adjuvant therapy in patients with breast cancer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Hydralazine has been widely employed in the development of drugs, derivatization reagents, and ligands. In the present work, we reported a new type of dehydrogenated ion [M ? H]+ that was produced from the hydralazine derivative of hexanal in electrospray ionization mass spectrometry (ESI‐MS). The formation of [M ? H]+ ions in the ESI‐MS was found to be independent on the mobile phase composition of the liquid chromatography and ESI source parameters. A series of hydralazine derivatives of aldehyde were investigated to confirm this phenomenon. The results showed that hydralazine derivatives of aldehydes that contained an sp3 hybridization carbon with a hydrogen at the α‐position of aldehydes could form the unexpected [M ? H]+ ions, whereas hydralazine derivative of acetone could only generate [M + H]+ ion in the ESI‐MS. We proposed the possible formation mechanism of [M ? H]+ ion for the hydralazine derivatives of aldehydes: the [M ? H]+ ion was possibly formed by the loss a hydrogen molecule (H2) from the protonated ion [M + H]+. The results obtained from density functional theory (DFT) calculations supported this proposed formation mechanism of [M ? H]+ ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号