共查询到20条相似文献,搜索用时 15 毫秒
1.
Jin Sook Kim 《European Polymer Journal》2009,45(7):1918-1923
To prepare intermediary layer crosslinked micelles, a photocrosslinkable amphiphilic ABC triblock copolymer, poly(ethylene glycol)-b-poly(2-cinnamoyloxyethyl methacrylate)-b-poly(methyl methacrylate) (PEG-PCEMA-PMMA), was synthesized and its micellar characteristics were investigated. The triblock copolymer of PEG-b-poly(2-hydroxyethyl methacrylate)-b-PMMA (PEG-PHEMA-PMMA) (Mn = 9800 g/mol, Mw/Mn = 1.33) was first polymerized by activators generated by electron transfer (AGET) atom transfer radical polymerization (ATRP) using a PEG macroinitiator in a mixed solvent of anisole/2-isopropanol (3/1 v/v). The middle block of the copolymer was then functionalized with cinnamoyl chloride. The degrees of polymerization of the PEG, PHEMA, and PMMA blocks were 113, 18 and 21, respectively. The critical micelle concentration (CMC) of the PEG-PCEMA-PMMA was 0.011 mg/mL. The PEG-PCEMA-PMMA micelles were spherically shaped with an average diameter of 43 nm. The intermediary layer of the PEG-PCEMA-PMMA micelles was crosslinked by UV irradiation. Not all of the cinnamate groups underwent photocrosslinking probably due to a lack of other cinnamate groups in their immediate vicinity. However, the degree of photocrosslinking of the intermediary layer of the PEG-PCEMA-PMMA micelles was sufficient to give excellent colloidal stability, even in different external environments. 相似文献
2.
Susan K. Kozawa Kazuma Matsumoto Ayaka Suzuki Mitsuo Sawamoto Takaya Terashima 《Journal of polymer science. Part A, Polymer chemistry》2019,57(3):313-321
Self‐assembly of amphiphilic ABA random triblock copolymers in water serves as a novel approach to create unique structure micelles connected with flexible linkages. The ABA triblock copolymers consist of amphiphilic random copolymers bearing hydrophilic poly(ethylene glycol) and hydrophobic dodecyl pendants as the A segments and a hydrophilic poly(ethylene oxide) (PEO) as the middle B segment. The A block is varied in dodecyl methacrylate content of 20%–50% and degree of polymerization (DP) of 100‐200. By controlling the composition and DP of the A block, various architectures can be tailor‐made as micelles in water: PEO‐linked double core unimer micelles, PEO‐looped unimer or dimer micelles, and multichain micelles. Those PEO‐linked or looped micelles further exhibit thermoresponsive solubility in water. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 313–321 相似文献
3.
We have studied the self‐assembly of the ABA triblock copolymer (P4VP‐b‐PS‐b‐P4VP) in dilute solution by using binary block‐selective solvents, that is, water and methanol. The triblock copolymer was first dissolved in dioxane to form a homogeneous solution. Subsequently, a given volume of selective solvent was added slowly to the solution to induce self‐assembly of the copolymer. It was found that the copolymer (P4VP43‐b‐PS366‐b‐P4VP43) tended to form spherical aggregate or bilayer structure when we used methanol or water as the single selective solvent, respectively. However, the aggregates with various nanostructures were obtained by using mixtures of water and methanol as the block‐selective solvents. The aggregate structure changed from sphere to rod, vesicle, and then to bilayer by changing water content in the block‐selective solvent from 0 to 100%. Moreover, it was found that the vesicle size could be well controlled by changing the copolymer content in the solution. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1536–1545, 2008 相似文献
4.
This study synthesized thermo‐sensitive amphiphilic block‐graft PNiPAAm‐b‐(PαN3CL‐g‐alkyne) copolymers through ring‐opening polymerization of α‐chloro‐ε‐caprolactone (αClCL) with hydroxyl‐terminated macroinitiator poly(N‐isopropylacrylamide) (PNiPAAm), substituting pendent chlorides with sodium azide. This was then used to graft various kinds of terminal alkynes moieties by means of the copper‐catalyzed Huisgen's 1,3‐dipolar cycloaddition (“click” reaction). 1H NMR, FTIR, and gel permeation chromatography (GPC) was used to characterize these copolymers. The solubility of the block‐graft copolymers in aqueous media was investigated using turbidity measurement, revealing a lower critical solution temperature (LCST) in the polymers. These solutions showed reversible changes in optical properties: transparent below the LCST, and opaque above the LCST. The LCST values were dependant on the composition of the polymer. With critical micelle concentrations (CMCs) in the range of 2.04–9.77 mg L?1, the block copolymers formed micelles in the aqueous phase, owing to their amphiphilic characteristics. An increase in the length of hydrophobic segments or a decrease in the length of hydrophilic segments amphiphilic block‐graft copolymers produced lower CMC values. The research verified the core‐shell structure of micelles by 1H NMR analyses in D2O. Transmission electron microscopy was used to analyze the morphology of the micelles, revealing a spherical structure. The average size of the micelles was in the range of 75–145 nm (blank), and 105–190 nm (with drug). High drug entrapment efficiency and drug loading content were observed in the drug micelles. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
5.
Jilly James Chidambaram Ramalechume Asit Baran Mandal 《Journal of Polymer Science.Polymer Physics》2007,45(17):2410-2420
The shape, size, aggregation, hydration, and correlation times of water insoluble PEO‐PPO‐PEO triblock copolymer micelles with sodium dodecylsulfate (SDS) micelles were investigated using transport studies and dynamic light scattering technique. From the conductance of micellar solutions of the polymer in 25 mM SDS and 5 mM NaCl, the hydration of polymer micelles were determined using the principle of obstruction of electrolyte migration by the polymer. The asymmetry of the micellar particles of polymer and polymer‐SDS mixed micellar systems in 5 mM NaCl and their average axial ratios were calculated using intrinsic viscosity and hydration data obeying Simha–Einstein equation. Hydration number and micellar sizes were variable with temperature. The shape of the polymer micelles has been ellipsoidal rather than spherical. The micellar volume, hydrodynamic radius, radius of gyration, diffusional coefficients as well as translational, rotational and effective correlation times have been calculated from the absolute values of the axes. The partial molal volume of polymer micelles has also been determined and its comparison with the molar volume of pure polymer suggested a volume contraction due to immobilization of the water phase by the hydrophilic head groups of the polymer. The thermodynamic activation parameters for viscous flow favor a more ordered water structure around polymer micelles at higher temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2410–2420, 2007 相似文献
6.
Qiao Jin Gongyan Liu Jian Ji 《Journal of polymer science. Part A, Polymer chemistry》2010,48(13):2855-2861
A novel photo and thermo double‐responsive block copolymer was developed to fabricate micelles and reverse micelles in aqueous solution. The block copolymer was synthesized by ATRP block copolymerization of a spiropyran‐ containing methacrylate (SPMA) with di(ethylene glycol) methyl ether methacrylate (DEGMMA). By facile control of the photo irradiation and solution temperature, PSPMA‐core and PDEGMMA‐core micelles can be obtained, respectively. The thermo‐ and photo‐responsive micelles were used as smart polymeric nanocarriers for controlled encapsulation, triggered release, and re‐encapsulation of model drug coumarin 102. The double‐responsive self‐assembly and disassembly were tracked by dynamic light scattering, transmission electron microscopy, and fluorescence spectroscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2855–2861, 2010 相似文献
7.
A novel pathogen detection system based on high‐resolution CE‐SSCP using a triblock copolymer matrix
Gi Won Shin Hee Sung Hwang Sang Woo Seo Mi‐Hwa Oh Chang Y. Ryu Charles J. Salvo Shaina Feldman Junsang Doh Gyoo Yeol Jung 《Journal of separation science》2010,33(11):1639-1643
Although CE‐SSCP analysis combined with 16S ribosomal RNA gene‐specific PCR has enormous potential as a simple and versatile pathogen detection technique, low resolution of CE‐SSCP causes the limited application. Among the experimental conditions affecting the resolution, the polymer matrix is considered to be most critical to improve the resolution of CE‐SSCP analysis. However, due to the peak broadening caused by the interaction between hydrophobic moiety of polymer matrices and DNA, conventional polymer matrices are not ideal for CE‐SSCP analysis. A poly(ethyleneoxide)‐poly(propyleneoxide)‐poly(ethyleneoxide) (PEO‐PPO‐PEO) triblock copolymer, with dynamic coating ability and a propensity to form micelles to minimize exposure of hydrophobic PPO block to DNA, can be an alternative matrix. In this study, we examined the resolution of CE‐SSCP analysis using the PEO‐PPO‐PEO triblock copolymer as the polymer matrix and four same‐sized DNA fragments of similar sequence content. Among 48 commercially available PEO‐PPO‐PEO triblock copolymers, three were selected due to their transparency in the operable range of viscosity and PEO137PPO43PEO137 exhibited the most effective separation. Significant improvement in resolution allowed discrimination of the similar sequences, thus greatly facilitated CE‐SSCP analysis compared to the conventional polymer matrix. The results indicate that PEO‐PPO‐PEO triblock copolymer may serve as an ideal matrix for high‐resolution CE‐SSCP analysis. 相似文献
8.
The chemical and micro‐structural changes at the top surface of the film of amphiphilic block copolymer poly(styrene‐b‐acrylamide) (PS950‐b‐PAM50) induced by different environmental conditions and temperature have been studied. Atomic force microscopy (AFM), Transmission electron microscopy (TEM), Scanning electron microscope (SEM), X‐ray Photoelectron Spectroscopy (XPS), and contact angle (CA) goniometry studies revealed that the roughness and the surface property in terms of hydrophilicity/hydrophobicity of the film strongly depend on the environmental conditions. Humidity, presence of solvent vapor and temperature at the time of film preparation have immense role in controlling surface properties. Hence, it is suggested that the surface properties of the amphiphilic block copolymer film can be tuned according to the requirement for its potential applications. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
9.
Chia‐Shing Wu Ya‐Ju Yang Szu‐Wen Fang Yun Chen 《Journal of polymer science. Part A, Polymer chemistry》2012,50(18):3875-3884
This study reports the synthesis, curing, and optoelectronic properties of a solution‐processable, thermally cross‐linkable electron‐ and hole‐blocking material containing fluorene‐core and three periphery N‐phenyl‐N‐(4‐vinylphenyl)benzeneamine ( FTV ). The FTV exhibited good thermal stability with Td above 478 °C in nitrogen atmosphere. The FTV is readily cross‐linked via terminal vinyl groups by heating at 160 °C for 30 min to obtain homogeneous film with excellent solvent resistance. Multilayer PLED device [ITO/PEDOT:PSS/cured‐ FTV /MEH‐PPV/Ca (50 nm)/Al (100 nm)] was successfully fabricated using solution processed. Inserting cured‐ FTV is between PEDOT:PSS and MEH‐PPV results in simultaneous reduction in hole injection from PEDOT:PSS to MEH‐PPV and blocking in electron transport from MEH‐PPV to anode. The maximum luminance and maximum current efficiency were enhanced from 1810 and 0.27 to 4640 cd/m2 and 1.08 cd/A, respectively, after inserting cured‐ FTV layer. Current results demonstrate that the thermally cross‐linkable FTV enhances not only device efficiency but also film homogeneity after thermal curing. FTV is a promising electron‐ and hole‐blocking material applicable for the fabrication of multilayer PLEDs based on PPV derivatives. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 000: 000–000, 2012 相似文献
10.
Kimio Imaizumi Takashi Ono Itaru Natori Shinichi Sakurai Kunihiko Takeda 《Journal of Polymer Science.Polymer Physics》2001,39(1):13-22
We report the effect of microphase‐separated structure on the mechanical and thermal properties of several poly(1,3‐cyclohexadiene‐block‐butadiene‐block‐1,3‐cyclohexadiene) triblock copolymers (PCHD‐block‐PBd‐block‐PCHD) and of their hydrogenated derivatives: poly(cyclohexene‐block‐ethylene/butylene‐block‐cyclohexene) triblock copolymers (PCHE‐block‐PEB‐block‐PCHE). Both mechanical strength and heat‐resistant temperature (ex. Vicat Softening Temperature: VSPT) tended to increase with an increase in the 1,3‐cyclohexadiene (CHD)/butadiene ratio. On the other hand, heat resistance of the hydrogenated block copolymer was found to be higher than that of the unhydrogenated block copolymer. However, the mechanical strength was lower than those of the unhydrogenated block copolymer with the same ratio of CHD to butadiene. To clarify the relationship between the higher order structures of those block copolymers and their properties, we observed the microphase‐separated structure by transmission electron microscope (TEM). Hydrogenated block copolymers were found to have more finely dispersed microphase‐separated structures than those of the unhydrogenated block copolymers with the same CHD/Bd ratios through the use of TEM and the small‐angle X‐ray scattering (SAXS) technique. Those results indicated that the segregation strength between the PCHE block sequence and the PEB block sequence increased, depending on hydrogenation of the unhydrogenated precursor. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 13–22, 2001 相似文献
11.
Amphiphilic block poly(propylene carbonate)‐block‐allyloxypolyethyleneglycol (PPC‐b‐APEG) copolymer was synthesized by the click chemistry, and its structure were characterized. PPC‐b‐APEG can self‐assemble into micelles without emulsifier in water. Shell cross‐linked micelles were obtained by the reaction of the allyloxy groups, which were exposed on the outer of the PPC‐b‐APEG micelles, and N‐vinylpyrrolidone (NVP). The morphology and size of the micelles before and after cross‐link reactions were characterized. The research result shows that the shell cross‐linking could improve the stability of micelles. The particle size of uncross‐linked micelle was about 800 nm. The size of cross‐linked micelles increased with increasing amount of cross‐linking degree. To better evaluate the release behavior of PPC‐b‐PEG copolymer, doxorubicin (DOX)‐loaded micelles were synthesized using DOX as the model drug. Results showed that the DOX releasing rate decreased with increasing of NVP. The shell cross‐linking do decrease the burst release behaviours of DOX and reduce the DOX release rate. 相似文献
12.
Kajsa Stridsberg Ann‐Christine Albertsson 《Journal of polymer science. Part A, Polymer chemistry》2000,38(10):1774-1784
Novel elastomeric A‐B‐A triblock copolymers were successfully synthesized in a new two‐step process: controlled ring‐opening polymerization of the cyclic ether–ester 1,5‐dioxepan‐2‐one as the amorphous middle block (B‐block) followed by addition and polymerization of the two semicrystalline L ‐lactide blocks (A‐block). A 1,1,6,6‐tetra‐n‐butyl‐1,6‐distanna‐2,5,7,10‐tetraoxacyclodecane initiator system was utilized and the reaction was performed in chloroform at 60 °C. A good control of the synthesis was obtained, resulting in well defined triblock copolymers. The molecular weight and chemical composition were easily adjusted by the monomer‐to‐initiator ratio. The triblock copolymers formed exhibited semicrystallinity up to a content of 1,5‐dioxepan‐2‐one as high as 89% as determined by differential scanning calorimetry. WAXS investigation of the triblock copolymers showed a crystal structure similar to that of the pure poly(L ‐lactide). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1774–1784, 2000 相似文献
13.
Xinhong Yu Chunxia Luo Qiaoqiao Zhao Hua Yang Yanchun Han 《Journal of Polymer Science.Polymer Physics》2014,52(15):1030-1036
The morphology transition of binary mixtures of polystyrene‐block‐poly(butadiene)‐block‐poly(2‐vinylpyridine)(SBV) triblock and polystyrene (PS) homopolymer thin films was investigated as a function of the volume fraction of added homopolymer and the annealing time in benzene vapor. It was found that the weight ratio of PS in the blends influenced the transition process. When PS content was >5%, the order‐order transition (OOT) of core‐shell cylinders (C) →sphere in “diblock Gyroid” (sdG) → sphere in lamella (sL) → sphere (S) was observed, which was similar to ABC triblock copolymer except for the increased surface area of the PS phase. When PS content reached to 10–30%, the OOT in the sequence of C → sL → S was observed. The disappearance of the Gyroid phase is due to the change of the effective volume fraction. Further increasing the PS content, C phase also disappeared and sL → S was expected to take place. © 2014 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2014 , 52, 1030–1036 相似文献
14.
Jing Yang Wei‐Dong He Chen He Jing Tao Sheng‐Qi Chen Shao‐Min Niu Shao‐Lin Zhu 《Journal of polymer science. Part A, Polymer chemistry》2013,51(18):3791-3799
Hollow mesoporous silica nanoparticles (HMSNs) grafted with a photo‐responsive copolymer containing coumarin groups were successfully prepared. With uniform polystyrene nanoparticles and cetyltrimethylammonium bromide correspondingly as the template of core and channel, HMSNs were made from tetraethyloxysilane in alkalic condition. Epoxy groups were introduced onto the outer surface of HMSNs with γ‐(2,3‐epoxypropoxy)propyltrimethoxysilane and converted into azido groups with sodium azide, resulting in azido‐functionalized HMSNs (azido‐HMSNs). Meanwhile, single‐electron transfer‐living radical copolymerization of methyl methacrylate (MMA) and 7‐(2‐methacryloyloxy)‐4‐methylcoumarin (CMA) with propargyl 2‐bromoisobutyrate as the initiator produced alkynyl‐capped P(MMA‐co‐CMA) [alkynyl‐P(MMA‐co‐CMA)]. Finally, photo‐responsive HMSNs grafted with P(MMA‐co‐CMA) [HMSN‐g‐P(MMA‐co‐CMA)] was achieved through the click reaction between azido‐HMSNs and alkynyl‐P(MMA‐co‐CMA). Different techniques such as transmission electron microscopy, Fourier transform infrared spectroscopy, and thermal gravimetric analysis confirmed the successful preparation of the resultant hybrid nanoparticles and their intermediates. Because of its hollow core, mesoporous shell channels and light responsiveness, the coumarin‐modified HMSNs would be an interesting nano‐vehicle for guest molecules. Thus, the loading and release of pyrene with HMSN‐g‐P(MMA‐co‐CMA) was studied. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3791–3799 相似文献
15.
A double hydrophilic block copolymer composed of poly(acrylic acid) (PAA) and poly(4‐vinyl pyridine) (P4VP) was obtained through hydrolysis of diblock copolymer of poly(tert‐butyl acrylate) (PtBA) and P4VP synthesized using atom transfer radical polymerization. Water‐soluble micelles with PAA core and P4VP corona were observed at low (acidic) pH, while micelles with P4VP core and PAA corona were formed at high (basic) pH. Two metalloporphyrins, zinc tetraphenylporphyrin (ZnTPP) and cobalt tetraphenylporphyrin (CoTPP), were used as model compounds to investigate the encapsulation of hydrophobic molecules by both types of micelles. UV–vis spectroscopic measurements indicate that micelles with P4VP core are able to entrap more ZnTPP and CoTPP as a result of the axial coordination between the transition metals and the pyridine groups. The study found that metalloporphyrins encapsulated by the micelles with PAA core could be released on pH increase, while those entrapped by the micelles with P4VP core could be released on pH decrease. This behavior originates from the two‐way pH change‐induced disruption of PAA‐b‐P4VP micelles. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1734–1744, 2006 相似文献
16.
Shu‐Hui Qin Kun‐Yuan Qiu 《Journal of polymer science. Part A, Polymer chemistry》2001,39(9):1450-1455
The block copolymerization of tert‐butyl methacrylate (tBMA) with a difunctionalized polystyrene (PS) macroinitiator was investigated. The polymerizations were performed under UV light irradiation using PS bearing α‐ and ω‐functionalized end groups containing diethyldithiocarbamyl groups as a macroiniferter. Kinetic studies indicate the molecular weights of triblock copolymers increased linearly with the conversion. Block copolymers with different lengths of PtBMA segments were easily prepared by varying the ratio of tBMA and PS macroiniferter or by controlling the monomer conversion. The formations of block copolymers were characterized by gel permeation chromatographic, 1H NMR, and DSC analyses. PtBMA segments of the triblock copolymer were subsequently hydrolyzed quantitatively to poly(methacrylic acid) segments using concentrated HCl as a catalyst in a refluxing solution of dioxane, and then an amphiphilic ABA triblock copolymer was produced. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1450–1455, 2001 相似文献
17.
《先进技术聚合物》2018,29(7):2064-2071
A new cross‐linked system of silicone rubber (SR) was obtained from silicone‐polyurea block copolymers that was synthesized with aminopropyl terminated polydimethylsiloxane and (4‐isocyanatocyclohexyl)‐methane. SR possessed self‐reinforced and physical cross‐linked structure. It had better mechanical properties that the hardness, the tensile strength, and the elongation at break could reach 65 Shore A, 3.78 MPa, and 458% with the polyurea segment content ranging from 2.01% to 9.13% by weight . The hydrogen bond that led to the physical cross‐linked structure was proved byFourier transform infrared spectroscopy. The microphase separated structure that caused the self‐reinforcement was illustrated by scanning electron microscopy, X‐ray diffraction analysis, and dynamic mechanical analysis. Fourier transform infrared spectroscopy results showed the hydrogen bond formation between the polyurea units. Scanning electron microscopy, dynamic mechanical analysis, and X‐ray diffraction analysis results proved the microphase separation existed between polyurea units and ―Si―O―Si― chains. The increase of polyurea contents enhanced the binding of hydrogen bond and improved the extent of microphase separation. Accordingly, it decreased the thermal properties and lowered the glass transition temperature (Tg) from −108°C to −114°C. Also, the increase of polyurea contents increased the hydrophobicity of SR that the surface free energy could reach to −24.81 mN/m. 相似文献
18.
Hua Wei Roya Ravarian Sabrina Dehn Sebastien Perrier Fariba Dehghani 《Journal of polymer science. Part A, Polymer chemistry》2011,49(8):1809-1820
A novel amphiphilic thermosensitive poly(ethylene glycol)45‐b‐poly(methyl methacrylate46‐co‐3‐(trimethoxysilyl)propyl methacrylate)2‐b‐poly(N‐isopropylacrylamide)429 (PEG45‐b‐P(MMA46‐co‐MPMA2)‐b‐PNIPAAm429) triblock copolymer was synthesized via consecutive atom transfer radical polymerization techniques. The thermoinduced association behavior of the resulting triblock copolymers in aqueous medium was further investigated in detail by 1H NMR, transmission electron microscopy, and dynamic light scattering. The results showed that at the temperature (25 °C) below the LCST, PEG45‐b‐P(MMA46‐co‐MPMA2)‐b‐PNIPAAm429 triblock copolymers self‐assembled into the core crosslinked micelles with the hydrophobic P(MMA‐co‐MPMA) block constructing a dense core, protected by the mixed soluble PEG and PNIPAAm chains acting as a hydrophilic shell simultaneously. With an increase in temperature, the resulting core‐shell micelles converted into a new type of micelles with the hydrophilic PEG chains stretching out from the hydrophobic core through the collapsed PNIPAAm shell. On the other hand, at the temperature (40 °C) above the LCST, such triblock copolymers formed the crosslinked vesicles with the hydrophobic PNIPAAm and P(MMA‐co‐MPMA) blocks constructing a membrane core and the soluble PEG chains building the hydrophilic lumen and the shell. On further decreasing the temperature, the resulting vesicles underwent transformation from the shrunken to the expanded status, leading to the formation of swollen vesicles with enlarged size. This study is believed to present the first formation of two types of hybrid crosslinked self‐assemblies by thermoinduced regulation. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
19.
Formation of thermo‐sensitive and cross‐linkable micelles by self‐assembly of poly(pentafluorophenyl acrylate)‐containing block copolymer 下载免费PDF全文
Wilaiporn Graisuwan Hui Zhao Suda Kiatkamjornwong Patrick Theato Voravee P. Hoven 《Journal of polymer science. Part A, Polymer chemistry》2015,53(9):1103-1113
Poly(pentafluorophenyl acrylate)‐block‐poly(N‐isopropylacrylamide) (PPFPA‐b‐PNIPAM) is synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization. Light‐responsive moieties of ortho‐nitrobenzyl (ONB)‐protected diamine are partially introduced to the PFPA moieties via postpolymerization modification. The amphiphilic block copolymers are assembled into micelles in water. The ONB‐protected diamine group in the micelle core is released upon UV irradiation, which subsequently induces an in situ cross‐linking by a spontaneous reaction with the remaining PFPA groups in the core and yields stable cross‐linked micelles. Micellization of the copolymers is confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). 4‐Nitro‐7‐piperazino‐2,1,3‐benzoxadiazole (NBD) and pyrene are loaded in the core of cross‐linked micelles to demonstrate the possibility for additional post‐functionalization of residual PFPA moieties and hydrophobic molecule encapsulation, respectively. It is anticipated that these micelles can be alternative cargos for incorporating active compounds that may be useful for advanced applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1103–1113 相似文献
20.
The effect of the hydrophobic properties of blocks B and C on the aggregate morphologies formed by ABC linear triblock copolymers in selective solvent was studied through the self‐consistent field theory. Five typical micelles, such as core‐shell‐corona, hamburger‐like, segmented‐wormlike, were obtained by changing the hydrophobic properties of blocks B and C. The simulation results indicate that the shape and size of micelle are basically controlled by the hydrophobic degree of the middle block B, whereas the type of micelle is mainly determined by the hydrophobic degree of the end block C. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 484–492, 2009 相似文献