首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Segmented terpolymers, poly(alkyl methacrylate)‐g‐poly(D ‐lactide)/poly(dimethylsiloxane) (PLA/PDMS), were prepared with a combination of the “grafting through” technique (macromonomer method) and controlled/living radical polymerization (atom transfer radical polymerization or reversible addition–fragmentation transfer polymerization). Two synthetic pathways were used. The first was a single‐step approach in which a low‐molecular‐weight methacrylate monomer (methyl methacrylate or butyl methacrylate) was copolymerized with a PLA macromonomer and a PDMS macromonomer. The second strategy was a two‐step approach in which a graft copolymer containing one macromonomer was chain‐extended by a copolymerization of the second macromonomer and the low‐molecular‐weight methacrylate. The kinetics of both synthetic approaches were investigated, showing that the polymerizations exhibited a controlled/living behavior. Furthermore, the molecular structure of the terpolymers (composition, molecular weight distribution, and microstructure) was investigated by two‐dimensional liquid chromatography. Well‐defined terpolymers with controlled branch distribution, composition (Fw,PMMA/Fw,PLA/Fw,PDMS ~ 50/30/20) molecular weight (Mn ~ 50,000 g · mol?1), and a narrow molecular weight distribution (Mw/Mn ~ 1.3) were prepared via both pathways. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1939–1952, 2004  相似文献   

2.
The controlled synthesis and characterization of a range of stimuli responsive cationic terpolymers containing varying amounts of N‐isopropylacrylamide (NIPAM), 3‐(methylacryloylamino)propyl trimethylammonium chloride (MAPTAC), and poly(ethylene glycol)monomethyl methacrylate (PEGMA) is presented. The terpolymers were synthesized using reversible addition‐fragmentation chain transfer (RAFT) polymerization. Compositions of the terpolymers determined using 1H NMR were in close agreement to the theoretical values determined from the monomer feed ratios. GPC‐MALLS was used to analyze the molecular weight characteristics of the polymers, which were found to have low polydispersities (Mw/Mn 1.1–1.4). The phase transitions were studied as a function of PEGMA and NIPAM content using temperature controlled 1H NMR and turbidity measurements (UV‐Vis). The relationship between thermal stability and the comonomer ratio of the polymers was measured using thermogravimetric analysis (TGA). Protein interaction studies were performed to determine the suitability of the polymers for biological applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4021–4029, 2008  相似文献   

3.
In this article, we demonstrate the Passerini three‐component reaction as a simple, effective method for the synthesis of polymers with double functional end groups, which are key precursors for the preparation of ABC miktoarm terpolymers. Thus, via the one‐step Passerini reaction of monomethoxy poly(ethylene glycol)–propionaldehyde (PEG‐CHO) with 2‐bromo‐2‐methylpropionic acid and propargyl isocyanoacetamide, the PEG chain end was simultaneously functionalized with one atom transfer radical polymerization (ATRP) initiating site and one alkynyl group. The resulting PEG(‐alkynyl)‐Br was then used for the synthesis of three types of miktoarm ABC terpolymers via two approaches. First, we conducted ATRP of N‐isopropylacrylamide (NIPAM), then click reaction with azido‐terminated polystyrene (PS‐N3) or poly(tert‐butyl acrylate) (PtBA‐N3) and obtained two ABC miktoarm terpolymers PEG(‐b‐PNIPAM)‐b‐PS and PEG(‐b‐PNIPAM)‐b‐PtBA. Alternatively, we conducted single electron transfer living radical polymerization of tBA and click reaction with PS‐N3 simultaneously to give PEG(‐b‐PtBA)‐b‐PS. All the polymer precursors and miktoarm terpolymers have been characterized by 1H NMR, Fourier transform infrared, gel permeation chromatography, demonstrating that both approaches provided well‐defined ABC miktoarm terpolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

4.
We report on the one‐pot synthesis of well‐defined ABC miktoarm star terpolymers consisting of poly(2‐(dimethylamino)ethyl methacrylate), poly(ε‐caprolactone), and polystyrene or poly(ethylene oxide) arms, PS(‐b‐PCL)‐b‐PDMA and PEO (‐b‐PCL)‐b‐PDMA, taking advantage of the compatibility and mutual tolerability of reaction conditions (catalysts and monomers) employed for atom transfer radical polymerization (ATRP), ring‐opening polymerization (ROP), and click reactions. At first, a novel trifunctional core molecule bearing alkynyl, hydroxyl group, and bromine moieties, alkynyl(? OH)? Br, was synthesized via the esterification reaction of 5‐ethyl‐5‐hydroxymethyl‐2,2‐dimethyl‐1,3‐dioxane with 4‐oxo‐4‐(prop‐2‐ynyloxy)butanoic acid, followed by deprotection and monoesterification of alkynyl(? OH)2 with 2‐bromoisobutyryl bromide. In the presence of trifunctional core molecule, alkynyl(? OH)? Br, and CuBr/PMDETA/Sn(Oct)2 catalytic mixtures, target ABC miktoarm star terpolymers, PS(‐b‐PCL)‐b‐PDMA and PEO(‐b‐PCL)‐b‐PDMA, were successfully synthesized in a one‐pot manner by simultaneously conducting the ATRP of 2‐(dimethylamino)ethyl methacrylate (DMA), ROP of ε‐caprolactone (ε‐CL), and the click reaction with azido‐terminated PS (PS‐N3) or azido‐terminated PEO (PEO‐N3). Considering the excellent tolerability of ATRP to a variety of monomers and the fast expansion of click chemistry in the design and synthesis of polymeric and biorelated materials, it is quite anticipated that the one‐pot concept can be applied to the preparation of well‐defined polymeric materials with more complex chain architectures. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3066–3077, 2009  相似文献   

5.
The synthesis by reversible addition‐fragmentation chain transfer (RAFT) polymerization of three phosphonated terpolymers with tailored architecture has been studied. A phosphonated methacrylate (MAUPHOS) was copolymerized with vinylidene chloride (VC2) and methyl acrylate (MA) to prepare a gradient terpolymer poly(VC2co‐MA‐co‐MAUPHOS). Besides, hydroxyethyl acrylate (HEA) was used as a functional monomer in RAFT polymerization to prepare a statistical poly(VC2co‐MA‐co‐HEA) terpolymer and a diblock poly(VC2co‐MA)‐b‐poly(HEA) terpolymer. The HEA‐containing polymers were then modified with a phosphonated epoxide to introduce the phosphonated group. The control of the polymerization was proven by kinetic studies (evolution of molecular weight vs. conversion) and by a successful block copolymerization. The architecture of the terpolymers was determined by the reactivity ratios of the monomers: terpolymerization of VC2, MA, and HEA leading to an ideal statistical terpolymer (no composition drift) whereas terpolymerization of VC2, MA, and the phosphonated methacrylate led to a gradient terpolymer. These terpolymers were characterized by size exclusion chromatography, 31P NMR and differential scanning calorimetry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 13–24, 2006  相似文献   

6.
The synthesis, one‐ and two‐photon absorption (TPA) and emission properties of two novel 2,6‐anthracenevinylene‐based copolymers, poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinylene‐alt‐N‐octyl‐3,6‐carbazolevinyl‐ene] ( P1 ) and poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinyl‐ene‐alt‐N‐octyl‐2,7‐carbazolevinylene] ( P2 ) were reported. The as‐synthesized polymers have the number‐average molecular weights of 1.56 × 104 for P1 and 1.85 × 104 g mol?1 for P2 and are readily soluble in common organic solvents. They emit strong bluish‐green one‐ and two‐photon excitation fluorescence in dilute toluene solution (? P1 = 0.85, ? P2 = 0.78, λem( P1 ) = 491 nm, λem( P2 ) = 483 nm). The maximal TPA cross‐sections of P1 and P2 measured by the two‐photon‐induced fluorescence method using femtosecond laser pulses in toluene are 840 and 490 GM per repeating unit, respectively, which are obviously larger than that (210 GM) of poly[9,10‐bis‐(3,4‐bis(2‐ethylhexyloxy) phenyl)‐2,6‐anthracenevinylene], indicating that the poly(2,6‐anthracenevinylene) derivatives with large TPA cross‐sections can be obtained by inserting electron‐donating moieties into the polymer backbone. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 463–470, 2010  相似文献   

7.
Low‐charge density ampholytic terpolymers composed of acrylamide (AM), (3‐acrylamidopropyl)trimethyl ammonium chloride (APTAC), and N‐acryloyl‐valine were prepared via free‐radical polymerization in 0.5 M NaCl to yield terpolymers with random charge distributions. Sodium formate (NaOOCH) was employed as a chain transfer agent during the polymerization to suppress gel effects and broadening of the molecular weight distribution (MWD). Terpolymer compositions were determined by 13C NMR spectroscopy. Terpolymer molecular weights (MWs) and polydispersity indices (PDIs) were obtained via size exclusion chromatography/multi‐angle laser light scattering (SEC‐MALLS). Intrinsic viscosity values determined from SEC‐MALLS data using the Flory–Fox relationship were compared with those determined by low‐shear dilute solution viscometry and found to be in good agreement. SEC‐MALLS experiments allowed examination of radius of gyration‐MW (RgM) relationships and the Mark‐Houwink‐Sakurada intrinsic viscosity‐MW ([η]‐M) relationships for terpolymers. The RgM and [η]‐M relationships indicated little or no excluded volume effects under SEC conditions indicating that the terpolymers were in near theta conditions in an aqueous buffer solution. Potentiometric titration experiments were performed in deionized (DI) water. These studies revealed that the apparent pKa of the AMVALTAC terpolymers increases with increasing VAL content. The solution properties of low‐charge density ampholytic terpolymers have been studied as functions of solution pH, ionic strength, and polymer concentration. The charge‐balanced terpolymers exhibit polyampholyte behavior at pH values ≥ 6.5. As solution pH is decreased, these charge‐balanced terpolymers become increasingly cationic due to the protonation of the VAL repeat units. Charge‐imbalanced terpolymers generally exhibit polyelectrolyte behavior, although the effects of intramolecular electrostatic interactions (e.g., polyampholyte effects) on the hydrodynamic volume are evident at certain values of solution pH and salt concentration. The solution behavior of the terpolymers in the dilute regime correlates well with that predicted by various polyampholyte solution theories. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3125–3139, 2006  相似文献   

8.
Low-charge-density ampholytic terpolymers composed of acrylamide, sodium 3-acrylamido-3-methylbutanoate (NaAMB), and (3-acrylamidopropyl)trimethylammonium chloride were prepared via free-radical polymerization in 0.5 M NaCl to yield terpolymers with random charge distributions. NaOOCH was used as a chain-transfer agent during the polymerization to eliminate the effects of the monomer feed composition on the degree of polymerization (DP) and to suppress gel effects and broadening of the molecular weight distribution. The terpolymer compositions were obtained via 13C NMR spectroscopy, and the residual counterion content was determined via elemental analysis for Na+ and Cl. The molecular weights (MWs) and polydispersity indices (PDIs) were determined via size exclusion chromatography/multi-angle laser light scattering (SEC–MALLS); the terpolymer MWs ranged from 1.3–1.6 × 106 g/mol, corresponding to DPs of 1.6–1.9 × 104 repeat units, with all terpolymers exhibiting PDIs of less than 2.0. Intrinsic viscosities determined from SEC–MALLS data and the Flory–Fox relationship were compared to intrinsic viscosities determined via low-shear dilute-solution viscometry and were found to agree rather well. Data from the SEC–MALLS analysis were used to analyze the radius of gyration/molecular weight (RgM) relationships and the Mark–Houwink–Sakurada intrinsic viscosity/molecular weight ([η]–M) relationships for the terpolymers. The RgM and [η]–M relationships revealed that most of the terpolymers exhibited little or no excluded volume effects under size exclusion chromatography conditions. Potentiometric titration of terpolymer solutions in deionized water showed that the apparent pKa value of the poly[acrylamide-co-sodium 3-acrylamido-3-methylbutanoate-co-(3-acrylamidopropyl)trimethylammonium chloride] terpolymers increased with increasing NaAMB content in the terpolymers and increasing ratios of anionic monomer to cationic monomer at a constant terpolymer charge density. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3236–3251, 2004  相似文献   

9.
Three different characterization methods—13C NMR spectroscopy, a terminal terpolymerization model, and a probability analysis based on the Poisson distribution—were used to determine the microstructure of random terpolymers. The methods were used to determine the amino acid sequence distribution of random terpolymers prepared from the polymerization of N‐carboxyanhydrides that contained L ‐leucine, β‐benzyl‐L ‐aspartate, and L ‐valine. Poly(L ‐leucine‐L ‐aspartic acid‐L ‐valine) [poly(LDV)] was designed as a target specific substrate for the α4β1 integrin that recognizes the tripeptide sequence leucine‐aspartic acid‐valine (LDV). The presence of the tripeptide sequence LDV within the polymer was determined to be eight LDV triad sequences on average in terpolymers of approximately 100 kDa. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4328–4337, 2006  相似文献   

10.
Linear triblock terpolymers of poly(n‐butyl methacrylate)‐b‐poly(methyl methacrylate)‐b‐poly(2‐fluoroethyl methacrylate) (PnBMA‐PMMA‐P2FEMA) were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization. Kinetic studies of the homopolymerization of 2FEMA by RAFT polymerization demonstrated controllable characteristics with fairly narrow polydispersities (~1.30). The resultant PnBMA‐PMMA‐P2FEMA triblock terpolymers were characterized via 1H NMR, 19F NMR, and gel permeation chromatography. These polymers formed micellar aggregates in a selective solvent mixture. The as‐formed micelles were analyzed using scanning electron microscopy and dynamic light scattering. It was found that these terpolymers could directly self‐organize into complex micelles in a tetrahydrofuran/methanol mixture with diameters that depended on polymer composition. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
Synthesis, molecular, and morphological characterization of two linear diblock copolymers consisting of two polydienes with specific geometric isomerisms and two triblock terpolymers with a combination of the same polydienes with polystyrene are investigated for both lower and very high molecular weights. This work is inspired from a previous research study which demonstrated that linear ABC terpolymers consisting of polystyrene, poly(butadiene), and poly(isoprene), with specific geometric isomerisms for the polydienes, lead to 3‐phase microphase separated systems. We report also the coexistence of the core‐shell double gyroid and the 3‐phase 4‐layer alternating lamellae morphologies with the majority fraction being the lamellar structure. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1238–1246  相似文献   

12.
Amphiphilic poly(ε‐caprolactone)‐b‐poly[(methacrylate‐graft‐poly(ethylene oxide))‐co‐6‐O‐methacryloyl‐D ‐galactopyranose] (PCL‐b‐P(MAPEO‐co‐GaMa)) with various compositions and molecular weights were synthesized via a controlled four‐step strategy. The first step involves the synthesis of functionalized poly(ε‐caprolactone) macroinitiator by ring‐opening polymerization (ROP) of ε‐caprolactone (CL) as initiated by aluminum triisopropoxide (Al(OiPr)3). After selective bromination of the hydroxyl end‐group of the resulting α‐isopropoxy, ω‐hydroxy poly(ε‐caprolactone) by using 2‐bromoisobutyryl bromide, the controlled radical copolymerization of α‐methoxy, ω‐methacrylate poly(ethylene oxide) (MAPEO) with 6‐O‐methacryloyl‐1,2;3,4‐di‐O‐isopropylidene‐D ‐galactopyranose (DIGaMa) was performed by atom transfer radical polymerization (ATRP) in THF at 60 °C using CuBr ligated with 1,1,4,7,10,10 hexamethyltriethylenetetramine (HMTETA) as catalytic complex. In the final step, isopropylidene protective functions were selectively removed using an aqueous formic acid solution leading to the expected amphiphilic graft copolymers. The molecular characterization of those copolymers was performed by 1H NMR spectroscopy and gel permeation chromatography (GPC) analysis. The self‐assembly of the copolymers into micellar aggregates as well as the related critical micellization concentration (CMC) in aqueous media were determined by dynamic light scattering (DLS) and fluorescence spectroscopy, respectively. In parallel, the morphology of the solid deposits of micellar aggregates was examined with atomic force microscopy (AFM). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3662–3672, 2008  相似文献   

13.
The synthesis and characterization of novel first‐ and second‐generation true dendritic reversible addition–fragmentation chain transfer (RAFT) agents carrying 6 or 12 pendant 3‐benzylsulfanylthiocarbonylsulfanylpropionic acid RAFT end groups with Z‐group architecture based on 1,1,1‐hydroxyphenyl ethane and trimethylolpropane cores are described in detail. The multifunctional dendritic RAFT agents have been used to prepare star polymers of poly(butyl acrylate) (PBA) and polystyrene (PS) of narrow polydispersities (1.4 < polydispersity index < 1.1 for PBA and 1.5 < polydispersity index < 1.3 for PS) via bulk free‐radical polymerization at 60 °C. The novel dendrimer‐based multifunctional RAFT agents effect an efficient living polymerization process, as evidenced by the linear evolution of the number‐average molecular weight (Mn) with the monomer–polymer conversion, yielding star polymers with molecular weights of up to Mn = 160,000 g mol?1 for PBA (based on a linear PBA calibration) and up to Mn = 70,000 g mol?1 for PS (based on a linear PS calibration). A structural change in the chemical nature of the dendritic core (i.e., 1,1,1‐hydroxyphenyl ethane vs trimethylolpropane) has no influence on the observed molecular weight distributions. The star‐shaped structure of the generated polymers has been confirmed through the cleavage of the pendant arms off the core of the star‐shaped polymeric materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5877–5890, 2004  相似文献   

14.
A modular approach to the synthesis of a library of hybrid dendritic‐linear copolymers was developed based on RAFT polymerization from monodisperse dendritic macroRAFT agents. By accurately controlling the molecular weight of the linear block, generation number of the dendrimer and the nature of the dendritic chains ends, the performance of these hybrid block copolymers as dispersing agents was optimized for a range of nanoparticles. For titanium dioxide nanoparticles, dispersion in a poly(methyl methacrylate) matrix was maximized with a second generation dendrimer containing four carboxylic acid end groups, and the quality of dispersion was observed to be superior to commercial dispersing agents for TiO2. This approach also allowed novel hybrid dendritic‐linear dispersing agents to be prepared for the dispersion of Au and CdSe nanoparticles based on disulphide and phosphine oxide end groups, respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1237–1258, 2009  相似文献   

15.
A series of one donor–two acceptor (D–A1)‐(D–A2) random terpolymers containing a 2,7‐carbazole donor and varying compositions of perylene diimide (PDI) and naphthalene diimide (NDI) acceptors was synthesized via Suzuki coupling polymerization. The optical properties of the terpolymers are weighted sums of the constituent parent copolymers and all show strong absorption over the 400 to 700 nm range with optical bandgaps ranging from 1.77 to 1.87 eV, depending on acceptor composition. The copolymers were tested as acceptor materials in bulk heterojunction all‐polymer solar cells using poly[(4,8‐bis‐(2‐ethylhexyloxy)‐benzo[1,2‐b;4,5‐b′]dithiophene)‐2,6‐diyl‐alt‐(4‐(2‐ethylhexanoyl)‐thieno[3,4‐b]thiophene)‐2,6‐diyl] (PBDTTT‐C) as the donor material. In contrast to the optoelectronic properties, the measured device parameters are not composition dependent, and rather depend solely on the presence of the NDI unit, where the devices containing any amount of NDI perform half as well as those using the parent polymer containing only carbazole and PDI. Overall this is the first example of a one donor–two acceptor random terpolymer system containing perylene diimide (PDI) and naphthalene diimide (NDI) acceptor units, and demonstrates a facile method of tuning polymer optoelectronic properties while minimizing the need for complicated synthetic and purification steps. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3337–3345  相似文献   

16.
The radical terpolymerization of 8‐bromo‐1H,1H,2H‐perfluorooct‐1‐ene with vinylidene fluoride (VDF) and perfluoro(4‐methyl‐3,6‐dioxaoct‐7‐ene) sulfonyl fluoride is presented. Changing the feed compositions of these three fluorinated comonomers enabled us to obtain different random‐type poly[vinylidene fluoride‐ter‐perfluoro(4‐methyl‐3,6‐dioxaoct‐7‐ene) sulfonyl fluoride‐ter‐8‐bromo‐1H,1H,2H‐perfluorooct‐1‐ene] terpolymers containing various sulfonyl fluoride and brominated side groups. Yields higher than 70% were reached in all cases. The hydrolysis of the sulfonyl fluoride group into the ? SO3Li function in the presence of lithium carbonate was quantitatively achieved without the content of VDF being affected, and so dehydrofluorination of the VDF base unit was avoided. These original terpolymers were then crosslinked via dangling bromine atoms in the presence of a peroxide/triallyl isocyanurate system, which produced films insoluble in organic solvents such as acetone and dimethylformamide (which totally dissolved uncured terpolymers). The acidification of ? SO3Li into the ? SO3H function enabled protonic membranes to be obtained. The thermal stabilities of the crosslinked materials were higher than those of the uncured terpolymers, and their electrochemical performances were investigated. According to the contents of the sulfonic acid side functions, the ion‐exchange capacities ranged from 0.6 to 1.5 mequiv of H+/g, whereas the water uptake and conductivities ranged from 5–26% (±11%) and from 0.5 to 6.0 mS/cm, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4566–4578, 2006  相似文献   

17.
Core‐shell type star polymers composed of poly(tert‐butyl acrylate) (poly(t‐BuA)) arms and 100% hyperbranched poly(arylene‐oxindole) interiors were synthesized via the “core‐first” method. Atom transfer radical polymerization of t‐BuA initiated by 2‐bromopropionyl terminal groups of the hyperbranched core was applied for the synthesis of the stars. The resultant star structures were characterized by gel permeation chromatography with triple detection. Polymers of molar masses Mn up to 1.68 × 105 g/mol were obtained. The obtained star polymers compared with the linear counterparts of the same molar mass have a much more compact structure in solution. The intrinsic viscosities of the stars are also significantly lower than their linear counterparts. Light scattering experiments were performed to provide information about the size of these macromolecules in solution. Preliminary characterization of the thermal properties of these novel materials is also reported. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1120–1135, 2009  相似文献   

18.
Amphiphilic ABC miktoarm star terpolymers consisting of polystyrene, poly(ε‐caprolactone), and poly(N‐isopropylacrylamide) arms, PS(‐b‐PNIPAM)‐b‐PCL, were synthesized via a combination of atom transfer radical polymerization, ring‐opening polymerization (ROP), and click chemistry. Difunctional PS bearing an alkynyl and a primary hydroxyl moiety at the chain end, PS‐alknylOH, was prepared by reacting azido‐terminated PS with an excess of 3,5‐bis(propargyloxy)benzyl alcohol (BPBA) under click conditions. The subsequent ROP of ε‐caprolactone using PS‐alknylOH macroinitiator afforded PS(‐alkynyl)‐b‐PCL copolymer bearing an alkynyl moiety at the diblock junction point. Target PS(‐b‐PNIPAM)‐b‐PCL amphiphilic ABC miktoarm star terpolymers were then prepared via click reaction between PS(‐alkynyl)‐b‐PCL and an excess of azido‐terminated PNIPAM (PNIPAM‐N3). The removal of excess PNIPAM‐N3 was accomplished by “clicking” onto alkynyl‐functionalized Wang resin. All the intermediate and final products were characterized by gel permeation chromatography, 1H NMR, and FTIR. In aqueous solution, the obtained amphiphilic ABC miktoarm star terpolymer self‐assembles into micelles possessing mixed PS/PCL cores and thermoresponsive shells, which were further characterized by dynamic laser light scattering and transmission electron microscopy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1636–1650, 2009  相似文献   

19.
The reversible addition fragmentation chain transfer (RAFT) polymerization of five active ester monomers based on 4‐vinylbenzoic acid had been investigated. Pentafluorophenyl 4‐vinylbenzoate could be polymerized under RAFT conditions yielding polymers with very good control over molecular weight and narrow molecular weight distributions. Following the synthesis of diblock copolymers consisting of polystyrene, polypentafluorostyrene, poly(4‐octylstyrene), or poly(4‐acetoxystyrene) as an inert block and poly(pentafluorophenyl 4‐vinylbenzoate) as a reactive block was successfully performed. The diblock copolymer poly(pentafluoro styrene)‐block‐poly(pentafluorophenyl 4‐vinylbenzoate) had been analyzed by 19F NMR spectroscopy in solution, demonstrating the synthetic potential of pentafluorophenyl 4‐vinylbenzoate as an extremely valuable monomer for the synthesis of highly functionalized polymeric architectures. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1696–1705, 2009  相似文献   

20.
Heteroarm H‐shaped terpolymers, [(poly(L ‐lactide))(polystyrene)]poly(ethylene oxide)[(polystyrene)(poly(L ‐lactide))], [(PLLA)(PS)]PEO[(PS)(PLLA)], in which PEO acts as a main chain and PS and PLLA as side arms, have been successfully prepared via combination of reversible addition–fragmentation transfer (RAFT) polymerization and ring‐opening polymerization (ROP). The first step is the synthesis of the PEO capped with one terminal dithiobenzoate group and one hydroxyl group at every chain end, [(HOCH2)(PhC(S)S)]PEO[(S(S)CPh)(CH2OH)] from the reaction of carboxylic acid with ethylene oxide. Then, the RAFT polymerization of styrene (St) was carried out using [(HOCH2)(PhC(S)S)]PEO[(S(S)CPh)(CH2OH)] as RAFT agent and AIBN as initiator, and the triblock copolymer, [(HOCH2)(PS)]PEO[(PS)(CH2OH)], was formed. Finally, the heteroarm H‐shaped terpolymers, [(PLLA)(PS)]PEO[(PS)(PLLA)], were produced by ROP of LLA, using triblock copolymer, [(HOCH2)(PS)]PEO[(PS)(CH2OH)], as macroinitiator and Sn(Oct)2 as catalyst. The target products and intermediates were characterized by 1H NMR spectroscopy and gel permeation chromatography. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 789–799, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号