首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Persistent layer‐by‐layer growth is demonstrated for pulsed‐laser homoepitaxy of ZnO thin films on $(000\bar 1)$ ZnO single crystals. Employing interval pulsed‐laser deposition (PLD), RHEED oscillations are stabilized over a film thickness of about 90 nm. For interval pulsed laser deposited films a considerably decreased root‐mean‐square surface roughness of 0.26 nm was found, in comparison to 0.74 nm for conventional PLD. A small asymmetry in the X‐ray diffraction (XRD) 2θω scan reveals compressive strain in the thin film being slightly larger for interval PLD as compared to conventional PLD. The FWHM of the photoluminescence (PL) I6 line is higher with about 500 µeV as compared to 350 µeV for the conventional PLD. Consequently, both XRD as well as PL indicate a slightly higher amount of charged defects for the interval PLD.

  相似文献   


2.
We demonstrate a high power green InGaN/GaN multiple‐quantum‐well (MQW) light emitting diode (LED) with a peak emission wavelength of 516 nm grown on low extended defect density semipolar (11 2) bulk GaN substrate by metal organic chemical vapor deposition. The output power and external quantum efficiency (EQE) at drive currents of 20 and 100 mA under direct current (DC) operation were 5.0 mW, 10.5% and 15.6 mW, 6.3%, respectively. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
AlN films have been grown on atomically flat carbon face 6H‐SiC (000 ) substrates by pulsed laser deposition and their structural properties have been investigated. In‐situ reflection high‐energy electron diffraction observations have revealed that growth of AlN at 710 °C proceeds in a Stranski–Krastanov mode, while typical layer‐by‐layer growth occurs at room temperature (RT) with atomically flat surfaces. It has been revealed that the crystalline quality of the AlN film is dramatically improved by the reduction in growth temperature down to RT and the full width at half maximum values in the X‐ray rocking curves for 0004 and 10 2 diffractions of the RT‐grown AlN film are 0.05° and 0.07°, respectively. X‐ray reciprocal space mapping has revealed that the introduction of misfit dislocations is suppressed in the case of RT growth, which is probably responsible for the improvement in crystalline quality. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The authors have grown high‐quality m ‐plane In0.36Ga0.64N (1 00) films on ZnO (1 00) substrates at room temperature (RT) by pulsed laser deposition (PLD) and have investigated their structural properties. m ‐plane InGaN films grown on ZnO substrates at RT possess atomically flat surfaces with stepped and terraced structures, indicating that the film growth proceeds in a two‐dimensional mode. X‐ray diffraction measurements have revealed that the m ‐plane InGaN films grow without phase separation reactions at RT. The full‐width at half‐maximum values of the 1 00 X‐ray rocking curves of films with X‐ray incident azimuths perpendicular to the c ‐ and a‐axis are 88 arcsec and 78 arcsec, respectively. Reciprocal space‐mapping has revealed that a 50 nm thick m ‐plane In0.36Ga0.64N film grows coherently on the ZnO substrate, which can probably explain the low defect density that is observed in the film. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We propose X‐ray absorption (XAS) measurements as a novel approach to determine the atomic structure of pre‐Guinier–Preston zones. These nano‐clusters are formed during very early stages of aging AlCu alloys, immediately after solution heat treatment and quenching. X‐ray absorption near‐edge structure (XANES) spectra were taken from technical aluminum alloys at the copper K edge, revealing the local atomic environment of copper. The spectra of – after solution heat treatment – freshly quenched and of artificially aged alloys differ significantly from each other. We compare the measured XANES spectra with those calculated by the FEFF‐8 code. We show the importance of employing realistic, i.e. relaxed, atomic coordinates around the scattering atom type from ab‐initio calculations with SIESTA. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

  相似文献   


6.
The competitive penetration of toluene with respect to oxygen, nitrogen and carbon dioxide into a thin and initially dry film of deuterated polystyrene (dPS) is compared to the reverse process of de‐swelling. In‐situ neutron reflectometry is used to follow the swelling and de‐swelling kinetics, allowing the determination of the total dPS thickness, roughness and solvent penetration. Swelling cannot be described in terms of case II diffusion due to the small film thickness and undersaturation results in a small swelling rate of 0.03 nm s–1. De‐swelling is slower by more than two orders in magnitude, thereby underlining the difficulty to remove once incorporated solvent molecules. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

  相似文献   


7.
Transport measurements of p‐type m ‐plane GaN films grown on low extended‐defect density, free‐standing m ‐plane (10 0) GaN substrates are presented. No significant anisotropy in in‐plane mobility was found for hole concentrations between 2.45 × 1017 and 8.7 × 1018 cm–3. Since faulted, heteroepitaxial m ‐plane films showed significant anisotropy in electron and hole mobility a microstructural feature with anisotropic distribution (basal plane stacking faults) is discussed as a possible source of anisotropic scattering in non‐polar and semi‐polar films. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
In this work we show that the growth of more than 250 µm thick self‐organized TiO2 nanotube layers is possible, using an electrochemical approach in organic electrolytes. The tubes can grow as a hexagonal close packed pore array. Crucial parameters that decide on the dimensions are the fluoride ion concentration, the voltage and the anodization time. Self‐organized tube formation is restricted to a critical parameter range. Highest aspect ratio tubes can be achieved under a set of very optimized conditions. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

  相似文献   


9.
Heteroepitaxial growth of non‐polar m ‐plane (10 0) ZnO has been demonstrated on (112) LaAlO3 single crystal substrates using the pulsed laser deposition method. X‐ray diffraction, reflection high energy electron diffraction, and cross‐sectional transmission electron microscopy with selected‐area diffraction, have been used to characterize the structural properties of deposited ZnO films. The epitaxial relationship between ZnO and LAO is shown to be (10 0)ZnO ∥ (112)LAO, (11 0)ZnO ∥ ( 1)LAO and [0001]ZnO ∥ [ 10]LAO. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
ZnO thin films were grown homoepitaxially on O‐face ZnO single crystals by pulsed‐laser deposition. The ZnO substrates grown by the hydrothermal method were heat‐treated in oxygen ambient at 1000 °C for 2 h prior to deposition. After the thermal treatment the substrates show bilayer steps between 200–400 nm wide terraces and a considerably improved crystalline structure. Thin film surfaces exhibit closed loop spirals and show steps of c /2 or c. The FWHM of the (0002) rocking curve of the best sample is 29″. Similar to the substrates used, Al is contained in the thin films (<1014 cm–3) as photoluminescence (PL) and thermal admittance spectroscopy suggest. However, deep levels between 200 and 400 meV below the conduction band are the dominant donors at room temperature. Low temperature PL is dominated by (Al0,X) (I6, FWHM: 200 µeV) and extremely homogeneous (σ ≈ 1%).

  相似文献   


11.
The gas‐phase elimination kinetics of 2,2‐diethoxyethyl amine and 2,2‐diethoxy‐N,N‐diethylethanamine (320–380 °C; 40–150 Torr) in a seasoned reaction vessel are homogeneous, unimolecular and obey a first‐order rate law. These elimination processes involve two parallel reactions. The first gives ethanol and the corresponding 2‐ethoxyethenamine. The latter compound further decomposes to ethylene, CO and the corresponding amine. The second parallel reaction produce ethane and the corresponding ethyl ester of an α‐amino acid. The following Arrhenius expressions are given as: For 2,2‐diethoxyethyl amine For 2,2‐diethoxy‐N,N‐diethylethanamine Comparative kinetic and thermodynamic parameters of the overall, the parallel and the consecutive reactions lead to consider two types of mechanisms in terms of a concerted polar cyclic transition state structures. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
We report a high‐repetition‐rate picosecond fiber‐based source at 2.1 µm offering exceptional performance capabilities over existing lasers near this wavelength, providing high average power and efficiency together with excellent spectral, power and beam pointing stability, in high spatial beam quality. This new source is based on a near‐degenerate MgO:PPLN optical parametric oscillator (OPO) pumped by an Yb‐fiber laser at 1064 nm, and incorporating a diffraction grating for spectral control. The device provides as much as 7.1 W of average power at 2.1 µm for a pump power of 18 W at an extraction efficiency of 39.4% in pulses of 20 ps at 79.3 MHz. The output exhibits passive power stability better than 1% rms over 15 hours, and a beam pointing stability ∼40 µrad over 1 hour, in high spatial quality with M2 ∼ 3.5. The output beam is linearly polarized and the pulse train has an amplitude stability better than 3.4% rms over 2 µsec. Radio‐frequency measurements of the output pulse train also confirm high temporal stability and low timing jitter, indicating that the source is ideal for variety of applications including pumping long‐wavelength mid‐infrared OPOs. Photograph shows the temperature‐controlled, 50‐mm‐long MgO:PPLN crystal inside the cavity, used as nonlinear gain medium in the picosecond source operating at 2.1 µm. The visible light is the result of non‐phase‐matched second harmonic generation of the pump beam in the MgO:PPLN crystal.

  相似文献   


13.
We demonstrated important changes produced on the modulation frequency of hybrid organic–inorganic light‐emitting diodes to examine the applicability as a light source for visible optical communications. The fabricated device structure was 4,4′‐bis[N ‐(1‐napthyl)‐N ‐phenyl‐amino]biphenyl/4,4′‐(bis(9‐ethyl‐3‐carbazovinylene)‐1,1′‐biphenyl:4,4′‐bis[9‐dicarbazolyl]‐2,2′‐biphenyl/ZnS/LiF/MgAg. This device showed an improvement in the modulation frequency using ZnS instead of an organic material, tris(8‐hydroxyquinoline)aluminum. A maximum cutoff frequency of 20.6 MHz was achieved.

  相似文献   


14.
The kinetics of the gas‐phase elimination of α‐methyl‐trans‐cinamaldehyde catalyzed by HCl in the temperature range of 399.0–438.7 °C, and the pressure range of 38–165 Torr is a homogeneous, molecular, pseudo first‐order process and undergoing a parallel reaction to produce via (A) α‐methylstyrene and CO gas and via (B) β‐methylstyrene and CO gas. The decomposition of substrate E‐2‐methyl‐2‐pentenal was performed in the temperature range of 370.0–410.0 °C and the pressure range of 44–150 Torr also undergoing a molecular, pseudo first‐order reaction gives E‐2‐pentene and CO gas. These reactions were carried out in a static system seasoned reactions vessels and in the presence of toluene free radical inhibitor. The rate coefficients are given by the following Arrhenius expressions:
  • Products formation from α‐methyl‐trans‐cinamaldehyde
  • α‐methylstyrene :
  • β‐methylstyrene :
  • Products formation from E‐2‐methyl‐2‐pentenal
  • E‐2‐pentene :
The kinetic and thermodynamic parameters for the thermal decomposition of α‐methyl‐trans‐cinamaldehyde suggest that via (A) proceeds through a bicyclic transition state type of mechanism to yield α‐methylstyrene and carbon monoxide, whereas via (B) through a five‐membered cyclic transition state to give β‐methylstyrene and carbon monoxide. However, the elimination of E‐2‐methyl‐2‐pentenal occurs by way of a concerted cyclic five‐membered transition state mechanism producing E‐2‐pentene and carbon monoxide. The present results support that uncatalyzed α‐β‐unsaturated aldehydes decarbonylate through a three‐membered cyclic transition state type of mechanism. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
3‐Methyl‐2(1H)‐quinoxalinone and three derivatives (3,7‐dimethyl‐2(1H)‐quinoxalinone, 3‐methyl‐6,7‐dichloro‐2(1H)‐quinoxalinone and 3‐methyl‐7‐nitro‐2(1H)‐quinoxalinone) have been synthesised and analysed by 1H NMR and IR spectral spectroscopies. The crystal structures have been determined at room temperature from X‐ray single crystal diffraction data for three of them and from powder diffraction data for the nitro derivative. 3‐Methyl‐2(1H)‐quinoxalinone crystallises in the P21/c monoclinic system, 3,7‐dimethyl‐2(1H)‐quinoxalinone in the Pbca orthorhombic system and the two others compounds in the P$\overline {1} $ triclinic system. For the nitro derivative, C? H$\cdots $ N short contacts are established between the carbon of the methyl and the double bounded nitrogen of the ring. For the three other compounds N? H$\cdots $ O hydrogen bonds involve the atoms of the heterocyclic ring. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
N‐Substituted 4,4‐dimethyl‐4‐silathiane 1‐sulfimides [R = Ph ( 1 ), CF3 ( 2 )] were studied experimentally by variable temperature dynamic NMR spectroscopy. Low temperature 13C NMR spectra of the two compounds revealed the frozen ring inversion process and approximately equal content of the axial and equatorial conformers. Calculations of the 4‐silathiane derivatives 1 , 2 and the model compound [R = Me ( 3 )] as well as their carbon analogs, the similarly N‐substituted thiane 1‐sulfimides [R = Ph ( 4 ), CF3 ( 5 ), Me ( 6 )] at the DFT/B3LYP/6–311G(d,p) level in the gas phase and in chloroform solution using the PCM model at the same level of theory showed a strong dependence of the relative stability of the conformer on the solvent. The electronegative trifluoromethyl group increases the relative stability of the axial conformer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A compact 64‐channel hybrid demultiplexer based on silicon‐on‐insulator nanowires is proposed and demonstrated experimentally to enable wavelength‐division‐multiplexing and mode‐division‐multiplexing simultaneously in order to realize an ultra‐large capacity on‐chip optical‐interconnect link. The present hybrid demultiplexer consists of a 4‐channel mode multiplexer constructed with cascaded asymmetrical directional‐couplers and two bi‐directional 17 × 17 arrayed‐waveguide gratings (AWGs) with 16 channels. Here each bi‐directional AWG is equivalent as two identical 1 × 16 AWGs. The measured excess loss and the crosstalk for the monolithically integrated 64‐channel hybrid demultiplexer are about ‐5 dB and ‐14 dB, respectively. Better performance can be achieved by minimizing the imperfections (particularly in AWGs) during the fabrication processes.

  相似文献   


18.
We discovered and characterized the χ (3)‐active Na3Li(SeO4)2·6H2O crystal with considerably high Raman gain coefficients for laser physics and nonlinear optics. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

  相似文献   


19.
We present experimental and theoretical evidence of the role played by the spin–orbit coupling in the electronic structure of a pseudomorphic Au monolayer on Nb(001) substrate. The bands found with the help of the angle‐resolved ultraviolet photoelectron spectroscopy (ARUPS) are compared with those obtained from ab initio self‐consistent calculations by the VASP and WIEN2k codes. The slab calculations are performed including geometric relaxation and using both the generalized‐gradient (GGA) and local‐density (LDA) approximations for the exchange–correlation energy. The dispersions and energy positions of the calculated bands agree with the experimentally determined band structure only if the LDA is used and the spin–orbit coupling is included. Therefore, both the structure relaxation and spin–orbit coupling are essential in understanding the electronic structure of the Au/Nb(001) system.

  相似文献   


20.
The alanine (Ala)‐based cluster models of C5, C7, and C10 H‐bonds are studied at the DFT/B3LYP level. CPMD/BLYP simulations of the infinite polyalanine α‐helix (C13 H‐bond) and the two‐stranded β‐sheets are performed. Combined use of frequency shifts and electron‐density features enable us to detect and describe quantitatively the non‐covalent interactions (H‐bonds) defining the intrinsic properties of Ala‐based secondary structures. The energies of the primary N? H O H‐bonds are decreasing in the following way: C13 > C5 ≥ C7 > C10. The energies of the secondary N? H O, N?H N, and H H interactions are comparable to those of the primary H‐bonds (~4.5 kcal/mol). Side chain–backbone C? H O interaction is found to be the weakest non‐covalent interaction in the considered species. Its energy is ~0.5 kcal/mol in the infinite polyalanine α‐helix. Quantum‐topological electron‐density analysis is found to be a powerful tool for the detection of secondary non‐covalent interactions (C?O H? C and H H) and bifurcated H‐bonds, while the frequency shift study is useful for the identification and characterization of primary or secondary H‐bonds of the N? H O type. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号