首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduction of analytes in ionization processes often obscures the determination of molecular structure. The reduction of analytes is found to take place in various desorption/ionization methods such as fast atom bombardment (FAB), secondary ion mass spectrometry (SIMS), matrix‐assisted laser desorption/ionization (MALDI) and desorption ionization on porous silicon (DIOS). To examine the extent of the reduction reactions taking place in electrospray droplet impact (EDI) processes, reduction‐sensitive dyes and S‐nitrosylated peptide were analyzed by EDI. No reduction was observed for methylene blue. While methyl red has a lower reduction potential than methylene blue, the reduction product ions were detected. For S‐nitrosylated peptide, protonated molecule ion [M + H]+ and NO‐eliminated molecular ion [M − NO + H]+• were observed but reduction reactions are largely suppressed in EDI compared with that in MALDI. As such, the analytes examined suffer from little reduction reactions in EDI. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Molecular clip 1 remains monomeric in water and engages in host–guest recognition processes with suitable guests. We report the Ka values for 32 1? guest complexes measured by 1H NMR, UV/Vis, and fluorescence titrations. The cavity of 1 is shaped by aromatic surfaces of negative electrostatic potential and therefore displays high affinity and selectivity for planar and cationic aromatic guests that distinguishes it from CB[n] receptors that prefer aliphatic over aromatic guests. Electrostatic effects play a dominant role in the recognition process whereby ion–dipole interactions may occur between ammonium ions and the C=O groups of 1 , between the SO3? groups of 1 and pendant cationic groups on the guest, and within the cavity of 1 by cation–π interactions. Host 1 displays a high affinity toward dicationic guests with large planar aromatic surfaces (e.g. naphthalene diimide NDI+ and perylene diimide PDI+) and cationic dyes derived from acridine (e.g. methylene blue and azure A). The critical importance of cation–π interactions was ascertained by a comparison of analogous neutral and cationic guests (e.g. methylene violet vs. methylene blue; quinoline vs. N‐methylquinolinium; acridine vs. N‐methylacridinium; neutral red vs. neutral red H+) the affinities of which differ by up to 380‐fold. We demonstrate that the high affinity of 1 toward methylene blue (Ka=3.92×107 m ?1; Kd=25 nm ) allows for the selective sequestration and destaining of U87 cells stained with methylene blue.  相似文献   

3.
A series of fluorescent imidazolium‐based salts containing the cation [AnCH2MeIm]+ (in which An=anthracene and Im=the imidazolium cation) with Cl?, BF4?, PF6?, SO3CF3?, [N(CN)2]?, [N(SO2CF3)2]?, or PhBF3? anions have been prepared and characterized. X‐ray diffraction analysis of four of the salts reveals a number of C? H???X‐type (X=O, N, F) hydrogen bonds between the hydrogen atoms from the imidazolium ring and in some cases from the anthracene ring with the electronegative atoms of the anions. Additionally, C? H???π interactions can be found in all the salts analyzed by X‐ray diffraction, whereas π–π stacking is observed only in the salt containing the phenyltrifluoroborate anion. Fluorescence emission analysis in acetonitrile shows that the fluorescence of these salts varies significantly according to the nature of the anion, and correlates to the extent of ion pairing present in solution. Photodimerization of these salts was observed, and in one case a dimer has been isolated and characterized by X‐ray crystallography.  相似文献   

4.
Recently reported ionophore‐based ion‐selective nanospheres contained pH‐independent and positively charged solvatochromic dyes. Here, we evaluate systematically the effect of anions to the fluorescence response of the nanospheres. The anion interference was found significant for anion concentrations above 10 mM. The sensor responses in the presence of various anion background was studied. While target ion (K+) causes the fluorescence of the nanospheres to decrease, increasing anion background also leads to lower fluorescence intensity. Lipophilic anions such as ClO4?, SCN?, and I? exhibited much more interference than hydrophilic anions (e. g., NO3?, Cl?, F?, SO42?). The trend of the anion interference followed the Hofmeister series. A theoretical model was also demonstrated based on anion adsorption on the surface of the nanospheres.  相似文献   

5.
The thermal ion/molecule reactions (IMRs) of the Group 14 metal oxide radical cations MO . + (M=Ge, Sn, Pb) with methane and ethene were investigated. For the MO . +/CH4 couples abstraction of a hydrogen atom to form MOH+ and a methyl radical constitutes the sole channel. The nearly barrier‐free process, combined with a large exothermicity as revealed by density functional theory (DFT) calculations, suggests a fast and efficient reaction in agreement with the experiment. For the IMR of MO . + with ethene, two competitive channels exist: hydrogen‐atom abstraction (HAA) from and oxygen‐atom transfer (OAT) to the organic substrate. The HAA channel, yielding C2H3 . and MOH+ predominates for the GeO . +/ethene system, while for SnO . + and PbO . + the major reaction observed corresponds to the OAT producing M+ and C2H4O. The DFT‐derived potential‐energy surfaces are consistent with the experimental findings. The behavior of the metal oxide cations towards ethene can be explained in terms of the bond dissociation energies (BDEs) of MO+? H and M+? O, which define the hydrogen‐atom affinity of MO+ and the oxophilicity of M+, respectively. Since the differences among the BDEs(MO+? H) are rather small and the hydrogen‐atom affinities of the three radical cations MO . + exceed the BDE(CH3? H) and BDE(C2H3? H), hydrogen‐atom abstraction is possible thermochemically. In contrast, the BDEs(M+? O) vary quite substantially; consequently, the OAT channel becomes energetically less favorable for GeO . + which exhibits the highest oxophilicity among these three group 14 metal ions.  相似文献   

6.
《Electroanalysis》2005,17(14):1269-1278
Oxidation/reduction of polypyrrole films coupled with ion exchange on the polymer/solution interface can be utilized for amperometric sensing of electroinactive ions. Anion or cation exchanging films (polypyrrole doped by chloride or poly(4‐styrenesulfonate) ions, respectively) can be used to determine common anions (as Cl?, NO , SO etc) or cations (K+, Na+, Li+, Ca2+, Mg2+) under conditions of alternating current (AC) amperometry in the range 10?4–1 M. A sensitivity can be tuned by choosing appropriate electrode potential, corresponding to polypyrrole oxidation (anion‐exchanging films) or reduction (cation‐exchangers). Electrochemical impedance spectroscopy and AC‐voltammetry studies have shown that applied frequency and potential could also affect the observed dependence of the signal (admittance or AC‐current) on ion concentration. For high frequency the sensitivity is higher but selectivity lower, due to influence of solution conductivity on the response. For low frequencies the sensitivity is lower; however, a selectivity increase was observed due to diverse mobility of ions in the polymer film. Selectivity of AC‐amperometric responses was studied both in separate and mixed solutions.  相似文献   

7.
Two [N???I+???N] halogen‐bonded dimeric capsules using tetrakis(3‐pyridyl)ethylene cavitands with different lower rim alkyl chains are synthesized and analyzed in solution and the gas phase. These first examples of symmetrical dimeric capsules making use of the iodonium ion (I+) as the main connecting module are characterized by 1H NMR spectroscopy, diffusion ordered NMR spectroscopy (DOSY), electrospray ionization mass spectrometry (ESI‐MS), and ion mobility‐mass spectrometry (TW‐IMS) experiments. The synthesis and effective halogen‐bonded dimerization proceeds through analogous dimeric capsules with [N???Ag+???N] binding motifs as the intermediates as evidenced by the X‐ray structures of (CH2Cl2)2@[ 3 a 2?Ag4?(H2O)2?OTs4] and (CH2Cl2)2@[ 3 a 2?Ag4?(H2O)4?OTs4], two structurally different capsules.  相似文献   

8.
The 1H NMR chemical shifts of the C(α)? H protons of arylmethyl triphenylphosphonium ions in CD2Cl2 solution strongly depend on the counteranions X?. The values for the benzhydryl derivatives Ph2CH? PPh3+ X?, for example, range from δH=8.25 (X?=Cl?) over 6.23 (X?=BF4?) to 5.72 ppm (X?=BPh4?). Similar, albeit weaker, counterion‐induced shifts are observed for the ortho‐protons of all aryl groups. Concentration‐dependent NMR studies show that the large shifts result from the deshielding of the protons by the anions, which decreases in the order Cl? > Br? ? BF4? > SbF6?. For the less bulky derivatives PhCH2? PPh3+ X?, we also find C? H???Ph interactions between C(α)? H and a phenyl group of the BPh4? anion, which result in upfield NMR chemical shifts of the C(α)? H protons. These interactions could also be observed in crystals of (p‐CF3‐C6H4)CH2? PPh3+ BPh4?. However, the dominant effects causing the counterion‐induced shifts in the NMR spectra are the C? H???X? hydrogen bonds between the phosphonium ion and anions, in particular Cl? or Br?. This observation contradicts earlier interpretations which assigned these shifts predominantly to the ring current of the BPh4? anions. The concentration dependence of the 1H NMR chemical shifts allowed us to determine the dissociation constants of the phosphonium salts in CD2Cl2 solution. The cation–anion interactions increase with the acidity of the C(α)? H protons and the basicity of the anion. The existence of C? H???X? hydrogen bonds between the cations and anions is confirmed by quantum chemical calculations of the ion pair structures, as well as by X‐ray analyses of the crystals. The IR spectra of the Cl? and Br? salts in CD2Cl2 solution show strong red‐shifts of the C? H stretch bands. The C? H stretch bands of the tetrafluoroborate salt PhCH2? PPh3+ BF4? in CD2Cl2, however, show a blue‐shift compared to the corresponding BPh4? salt.  相似文献   

9.
A new series of tris(2‐aminoethyl)amine (tren)‐based L ‐alanine amino acid backboned tripodal hexaamide receptors (L1–L5) with various attached moieties based on electron‐withdrawing fluoro groups and lipophilicity have been synthesized and characterized. Detailed binding studies of L1–L5 with different anions, such as halides (F?, Cl?, Br?, and I?) and oxyanions (AcO?, BzO? (Bz=benzoyl), NO3?, H2PO4?, and HSO4?), have been carried out by isothermal titration calorimetric (ITC) experiments in acetonitrile/dimethylsulfoxide (99.5:0.5 v/v) at 298 K. ITC titration experiments have clearly shown that receptors L1–L4 invariably form 1:1 complexes with Cl?, AcO?, BzO?, and HSO4?, whereas L5 forms a 1:1 complex only with AcO?. In the case of Br?, I?, and NO3?, no appreciable heat change is observed owing to weak interactions between these anions and receptors; this is further confirmed by 1H NMR spectroscopy. The ITC binding studies of F? and H2PO4? do not fit well for a 1:1 binding model. Furthermore, ITC binding studies also revealed slightly higher selectivity of this series of receptors towards AcO? over Cl?, BzO?, and HSO4?. Solid‐state structural evidence for the recognition of Cl? by this new category of receptor was confirmed by single‐crystal X‐ray structural analysis of the complex of tetrabutylammonium chloride (TBACl) and L1. Single‐crystal X‐ray diffraction clearly showed that the pentafluorophenyl‐functionalized amide receptor (L1) encapsulated Cl? in its cavity by hydrogen bonds from amides, and the cavity of L1 was capped with a TBA cation through hydrogen bonding and ion‐pair interactions to form a capped‐cleft orientation. To understand the role of the cationic counterpart in solution‐state Cl? binding processes with this series of receptors (L1–L4), a detailed Cl? binding study was carried out with three different tetraalkylammonium (Me4N+, Et4N+, and Bu4N+) salts of Cl?. The binding affinities of these receptors with different tetralkylammonium salts of Cl? gave binding constants with the TBA cation in the following order: butyl>ethyl>methyl. This study further supports the role of the TBA countercation in ion‐pair recognition by this series of receptors.  相似文献   

10.
This work shows that colloidal stability and aggregation kinetics of hydrophobic polystyrene (PS) nanospheres are extremely sensitive to the nature of the salt used to coagulate them. Three PS latices and four aggregating electrolytes, which all share the same cation (Na+) but have various anions located at different positions in the classical Hofmeister series depending on their kosmotropic or chaotropic character, are used. The present study focuses on analyzing different aggregating parameters, such as critical coagulation concentrations (CCC), cluster size distributions (CSD), initial kinetic constants K11, and fractal dimensions of the aggregates df. While aggregation induced by SO42? and Cl? behaved according to the predictions of the classical Derjaguin–Landau–Verwey–Overbeek theory, important discrepancies are found with NO3?, which become dramatic when using SCN?. These discrepancies among the anions were far more significant when they acted as counterions rather than as co‐ions. While SO42? and Cl? trigger fast diffusion‐limited aggregation, SCN? gives rise to a stationary cluster size distribution in a few aggregation times when working with cationic PS particles. Clear differences are found among all analyzed parameters (CCC, CSD, K11, and df), and the experimental findings show that particles aggregate in potential wells whose depth is controlled by the chaotropic character of the anion. This paper presents new experimental evidence that may help to understand the microscopic origin of Hofmeister effects, as the observations are consistent with appealing theoretical models developed in the last few years.  相似文献   

11.
Quasi‐oscillations in [O2] were observed during the methylene blue catalyzed oxidation of D‐glucose by O2 in alkaline aqueous solutions. The kinetics of anaerobic oxidation of D‐glucose (GH) by methylene blue (MB+) was investigated in a closed system. The reaction was first order with respect to the concentration of methylene blue and the observed rate constant increased with GH concentration in a saturated mode. The oxidation proceeds via complex formation between GH and MB+ and the rate constant of the decay of the complex was determined. The oxidation process was also investigated under aerobic conditions and the reaction rates and reaction orders were determined by spectrophotometric measurements of the disappearance of MB+ and by amperometric determination of O2 consumption. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 463–468, 1999  相似文献   

12.
The IR and Raman spectra and conformations of the ionic liquid 1‐ethyl‐3‐methyl‐1H‐imidazolium tetrafluoroborate, [EMIM] [BF4] ( 6 ), were analyzed within the framework of scaled quantum mechanics (SQM). It was shown that SQM successfully reproduced the spectra of the ionic liquid. The computations revealed that normal modes of the EMIM+?BF ion pair closely resemble those of the isolated ions EMIM+ and BF , except for the antisymmetric BF stretching vibrations of the anion, and the out‐of‐plane and stretching vibrations of the H? C(2) moiety of the cation. The most plausible explanation for the pronounced changes of the latter vibrations upon ion‐pair formation is the H‐bonding between H? C(2) and BF . However, these weak H‐bonds are of minor importance compared with the Coulomb interactions between the ions that keep them closely associated even in dilute CD2Cl2 solutions. According to the ‘gas‐phase’ computations, in these associates, the BF anion is positioned over the imidazolium ring of the EMIM+ cation and has short contacts not only with the H? C(2) of the latter, but also with a proton of the Me? N(3) group.  相似文献   

13.
The ammonia chemical ionization desorption spectra of N,N-dimethyl quaternary ammonium iodides in addition to high protonated molecular ion [M + H]+ intensity, show signals for an ion radical composed of N-methyl abstracted salt cation and ammonia [C + NH3? CH3]. These ions corresponding to the cation +2 show increased importance in the chemical ionization mode, using the same reagent gas. The technique of chemical ionization desorption appears suitable for the analysis of salts, and thus for the determination of the molecular weight of both anion and cation.  相似文献   

14.
The title compound, C16H16N5+·Cl (nbbH+·Cl), displays N—H⋯N, N—H⋯Cl and π–π inter­actions in the crystal packing. The Cl anion is chelated by the nbbH+ cation via two N—H⋯Cl hydrogen bonds. Inter‐ion N—H⋯N and N—H⋯Cl hydrogen bonds link ions related by 21 screw axes into chains along the c axis. These chains are further linked by glide‐plane operations to generate a three‐dimensional network, which is additionally stabilized by inter­chain π–π inter­actions.  相似文献   

15.
Abstract

The chromatographic behavior of some polar organic dyes and dye intermediates on thin layers of various forms of cationic and anionic exchange resins has been investigated. The results of this study indicate that the stationary ion and the mobile ion of both types of exchangers greatly affect both the level of tailing and the Rf values of the adsorbed compounds. It is also clear from this study that these resins are more suitable for evaluating the relatively simple dyes containing an SO3Na group than the higher molecular weight polyazo direct dyes used on cellulosic substrates, and that the Li+ and H+ forms of the cation exchangers work better than their counterparts. On the other hand, cationic dye molecules require the use of anion exchangers, with the ?OAc form giving better chromatograms than the C104? form.  相似文献   

16.
Unusual ionization behavior was observed with novel antineoplastic curcumin analogues during the positive ion mode of matrix‐assisted laser desorption ionization (MALDI) and dopant‐free atmospheric pressure photoionization (APPI). The tested compounds produced an unusual significant peak designated as [M ? H]+ ion along with the expected [M + H]+ species. In contrast, electrospray ionization, atmospheric pressure chemical ionization and the dopant‐mediated APPI (dopant‐APPI) showed only the expected [M + H]+ peak. The [M ? H]+ ion was detected with all evaluated curcumin analogues including phosphoramidates, secondary amines, amides and mixed amines/amides. Our experiments revealed that photon energy triggers the ionization of the curcumin analogues even in the absence of any ionization enhancer such as matrix, solvent or dopant. The possible mechanisms for the formation of both [M ? H]+ and [M + H]+ ions are discussed in this paper. In particular, three proposed mechanisms for the formation of [M ? H]+ were evaluated. The first mechanism involves the loss of H2 from the protonated [M + H]+ species. The other two mechanisms include hydrogen transfer from the analyte radical cation or hydride abstraction from the neutral analyte molecule. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Attempts to prepare previously unknown simple and very Lewis acidic [RZn]+[Al(ORF)4]? salts from ZnR2, AlR3, and HO?RF delivered the ion‐like RZn(Al(ORF)4) (R=Me, Et; RF=C(CF3)3) with a coordinated counterion, but never the ionic compound. Increasing the steric bulk in RZn+ to R=CH2CMe3, CH2SiMe3, or Cp*, thus attempting to induce ionization, failed and led only to reaction mixtures including anion decomposition. However, ionization of the ion‐like EtZn(Al(ORF)4) compound with arenes yielded the [EtZn(arene)2]+[Al(ORF)4]? salts with arene=toluene, mesitylene, or o‐difluorobenzene (o‐DFB)/toluene. In contrast to the ion‐like EtZn(η3‐C6H6)(CHB11Cl11), which co‐crystallizes with one benzene molecule, the less coordinating nature of the [Al(ORF)4]? anion allowed the ionization and preparation of the purely organometallic [EtZn(arene)2]+ cation. These stable materials have further applications as, for example, initiators of isobutene polymerization. DFT calculations to compare the Lewis acidities of the zinc cations to those of a large number of organometallic cations were performed on the basis of fluoride ion affinity. The complexation energetics of EtZn+ with arenes and THF was assessed and related to the experiments.  相似文献   

19.
In this contribution, polystyrene (PS) bearing nitrogen‐rich ligands as chelation moieties for both Ag+ ions and Ag(0) nanoparticles was prepared through successive chemical modifications of native PS including nitration (treatment with HNO3/H2SO4), reductive amination (treatment with SnCl2/HCl), Michael addition of methyl acrylate, and grafting of ethyelenediamine. The as‐synthesized PS derivative was further used to support silver nanoparticles through initial chelation of the silver nanoparticle ions precursor and subsequent chemical in situ reduction with sodium borohydride. Chemical structure of the PS derivatives was confirmed after each synthesis step by using complementary characterization methods including infrared and energy‐dispersive X‐ray spectroscopies, elemental analysis, X‐ray diffraction, thermogravimetric analysis, and scanning electron microscopy. The catalytic activity of the PS‐EAD/AgNP nanocomposite was demonstrated using the reduction of methylene blue to leucomethylene blue, as a model reaction. The reaction was monitored by UV‐vis spectrophotometry and achieved with an excess of sodium borohydride allowing for a pseudo‐first‐order analysis of the kinetic reaction parameters. Quantitative reduction of the methylene blue was obtained upon successive catalytic cycles with a rate constant value of 0.4016 minute?1.  相似文献   

20.
Boronate ester complexes generated between methylene blue (MB+)‐functionalized Au nanoparticles (NPs) and electrode surfaces are implemented to stimulate the bioelectrocatalyzed reduction of H2O2 in the presence of horseradish peroxidase (HRP). Two kinds of Au NPs are prepared: Class I includes MB+/phenylboronic acid as a modifying layer, whereas Class II includes MB+/dithiothreitol as a mixed capping layer. The Class I or II NPs form boronate ester complexes with a dithiothreitol‐ or phenylboronic acid‐functionalized Au electrodes, respectively. By the cyclic loading of the NPs on the electrodes (pH 8.1), and the removal of the NPs (pH 1.5), switchable bioelectrocatalyzed reduction of H2O2 is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号