首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intrigued by the good performance of 1,5‐diphenylpenta‐1,4‐diyn‐3‐one ( DPD ) as photoinitiator for radical polymerization we prepared and investigated several donor substituted derivatives. UV‐Vis spectroscopy revealed a gradual red‐shift of λmax and higher extinction in the order of the donor capability. A methoxy‐substituted derivative ( O‐DPD ) exhibited significant photoinitiation activity in photo‐DSC experiments. Steady state photolysis experiments showed decreased decomposition rates with increasing donor capability. A dimethylamino derivative N‐DPD was even photostable under these conditions. Because of to the D‐π‐A‐π‐D system of these compounds two‐photon induced 3D photopolymerization experiments were performed and N‐DPD showed outstanding performance compared to often applied single photon initiators. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3280–3291, 2007  相似文献   

2.
Phosphorus‐containing vinyl esters and vinyl carbamates were synthesized as new biocompatible and degradable photopolymers. Reactivity of the monomers with one, two, and three polymerizable double bonds was evaluated by photo‐differential scanning calorimetry. With respect to their potential application in the biomedical field, studies on cytotoxicity, mechanical stability, and hydrolytic erosion behavior of the poly(vinyl alcohol)‐based derivatives were performed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2916–2924, 2010  相似文献   

3.
The cationic photopolymerization of oxetane‐based systems containing silicon monomers was investigated. For this purpose, three new silicon‐containing oxetane monomers were synthesized through a simple and straightforward synthetic method. The silicon‐containing monomers were added to a typical oxetane resin, 3,3′‐[oxydi(methylene)]bis(3‐ethyloxetane), in concentrations of 1–5 wt %. They exploited a certain surface tension effect without affecting the rate of polymerization. Enrichment only on the air side was achieved, which induced hydrophobicity in the photocured films, depending on the monomer structure and concentration. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1415–1420, 2004  相似文献   

4.
In a continuation of our research on new chromophores for photoinitiators (PIs), we investigated a triple‐bond‐containing benzophenone derivative. 1,5‐Diphenyl‐1,4‐pentadiyn‐3‐one ( 2 ) was prepared from phenylacetylene and ethyl formate by a one‐pot reaction. Differential scanning photocalorimetry experiments in lauryl acrylate of 2 showed surprisingly high activity for the double‐bond conversion and rate of polymerization at the lowest PI concentrations and even without any coinitiator. By the application of monomers with abstractable hydrogens, significant improvement in the photoreactivity was observed. Ultraviolet–visible spectroscopy revealed strong absorption up to 350 nm. Steady‐state photolysis experiments proved that the photochemistry of this compound was faster than that of benzophenone. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 101–111, 2005  相似文献   

5.
The synthesis of new water‐soluble photoinitiators (PIs) based on hydroxyalkylphenones, benzophenones, and thioxanthones with carbohydrate residues such as glucose, cellobiose, and 1‐amino‐1‐deoxy‐D ‐glucitol (glucamine) is described. In addition, selected initiators were reacted with methacryloyl chloride to obtain copolymerizable initiators with improved migration stability. Results from photo differential scanning calorimetry and gel‐content measurements in commercially available water‐thinnable and emulsion‐type resins as well as 2‐hydroxyethyl acrylate are included. Glucose‐modified PIs gave the best results with respect to compatibility with the resin, reactivity, and gel content. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1504–1518, 2002  相似文献   

6.
Several benzophenone‐ and thioxanthone‐based photosensitizers (PSs) were covalently bonded to hydroxyalkylphenone‐ and aminoalkylphenone‐based photoinitiators (PIs) to enhance the rate of the excitation‐transfer effect due to the close vicinity of the PS to the PI. The properties of these new systems were investigated with UV spectroscopy and photo‐differential scanning calorimetry. Broadband irradiation experiments and selective excitation of the PS were carried out for the physical mixtures and covalently bonded PI/PS combinations to investigate the effect of excitation transfer. Selective excitation of the PS chromophore revealed that the energy transfer was significantly increased in covalently bonded initiators in comparison with the physical mixtures. This effect was most pronounced for the hydroxyalkylphenones that were sensitized by suitable benzophenone derivatives, especially at low PI concentrations. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2285–2301, 2004  相似文献   

7.
A series of benzophenone derivatives (N‐BPs) containing tertiary amine group used as hydrogen abstraction‐type (type II) photoinitiators were synthesized through the addition reaction of secondary amines with 4‐(2,3‐epoxypropyloxy) benzophenone. The chemical structures were characterized with 1H NMR, FTIR spectroscopy, and UV spectrum measurements. The N‐BPs showed the higher absorption in 300–400 nm than benzophenone (BP). The photoinitiating activity was examined based on the photopolymerization of 1,6‐hexanediol diacrylate using photo‐DSC method. The results showed that the photoinitiating efficiency was negatively affected by the molecular structure of alkyl group connected to the tertiary amine with the order of isopropyl (N‐BPI) < methyl (N‐BPM) < ethyl (N‐BPE) < propyl (N‐BPP). Moreover, the diethanolamine‐modified benzophenone derivative (N‐BPOH) had the highest‐photoinitiating efficiency for free radical polymerization systems among the N‐BPs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
9.
We describe a new strategy for preparation of benzoxazine monomers based on in situ preparation of a thiol‐functionalized benzoxazine and successive chemical modification of the thiol moiety. The thiol‐functionalized benzoxazine can be prepared from its precursor bearing two benzoxazine moieties linked by disulfide bond. Reductive cleavage of the disulfide bond of the precursor with using triphenylphosphine as a reducing agent allows successful preparation of the thiol‐functionalized benzoxazine. By performing this reduction process in the presence of epoxides and acrylates, the formation of the thiol moiety and its successive reaction with those electrophiles proceed efficiently to give the corresponding benzoxazines with sulfide moieties. The benzoxazine monomers thus prepared exhibit much higher polymerization ability than those without sulfide moiety. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1448–1457  相似文献   

10.
By combining frontal polymerization and radical‐induced cationic polymerization, it was possible to cure thick samples of an epoxy monomer bleached by UV light. The effect of the relative amounts of cationic photoinitiator and radical initiator was thoroughly investigated and was related to the front's velocity and its maximum temperature. The materials obtained were characterized by quantitative conversion also in the deeper layers, not reached by UV light. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2066–2072, 2004  相似文献   

11.
Camphorquinone (CQ), a widely used photoinitiator (PI) in dental applications, was covalently bonded to aromatic amines to enhance the rate of electron and proton transfer effect due to the close vicinity of the diketone and the amine group. 10‐bromocamphorquinone and 10‐bromomethylcamphorquinone were selected as suitable precursors for esterification with the carboxyl group containing aromatic amines based on 4‐dimethylaminobenzoic acid. Properties of the new photoinitiating systems were investigated by UV spectroscopy and differential scanning photocalorimetry in lauryl acrylate. Compared to physical mixtures, in all cases similar or even better performance was obtained. Surprisingly, 10‐acetyl derivatives 7 – 9 and 18 especially, were found to be highly reactive. Compared to CQ/ethyl 4‐dimethylaminobenzoate, the rate of photopolymerization was increased by a factor of up to 2. Intramolecular reaction was confirmed by photo‐differential scanning calorimetry experiments with varying PI concentrations. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4948–4963, 2004  相似文献   

12.
Ester‐free silane and siloxane‐based thiol monomers were successfully synthesized and evaluated for application in thiol‐ene resins. Polymerization reaction rates, conversion, network properties as well as degradation experiments of those thiol monomers in combination with triallyl‐1,3,5‐triazine‐2,4,6(1H,3H,5H)‐trione (TATT) as ene component were performed and compared with formulations containing the commercially available mercaptopropionic ester‐based thiol pentaerythritol tetra‐3‐mercaptopropionate. Kinetic analysis revealed appropriate reaction rates and conversions reaching 90% and higher. Importantly, storage stability tests of those formulations clearly indicate the superiority of the synthesized mercaptans compared with pentaerythritol tetra‐3‐mercaptopropionate/TATT resins. Moreover, photocured samples containing silane‐based mercaptans provide higher glass transition temperatures and withstand water storage without a significant loss in their network properties. This behavior together with the observed excellent degradation resistance of photocured silane‐based thiol/TATT formulations make these multifunctional mercaptans interesting candidates for high‐performance applications, such as dental restoratives and automotive resins. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 418–424  相似文献   

13.
The photocuring process of the diglycidyl ether of bisphenol A (DGEBA) with the bislactone 1,6‐dioxaspiro[4,4]nonane‐2,7‐dione (s(γ‐BL)) was studied. Triarylsulfonium hexafluoroantimonate was employed as photoinitiator. FTIR/ATR was used to study the evolution of epoxy, lactone, and intermediate spiroorthoester groups to identify the different reactions that take place during the photocuring process. Photo‐DSC and DSC were used to study the thermal evolution of the photocuring process and to assess the Tg of the fully cured material. Thermogravimetric analysis (TGA) was used to determine the thermal stability of the fully cured material. The thermomechanical properties of the materials were investigated using dynamic mechanical‐thermal analysis. Shrinkage undergone during photocuring and gelation was studied with TMA. A strong influence of the photocuring temperature on the photocuring process of the DGEBA‐ s(γ‐BL) system was observed. Differences in the reactivity of the different species were observed with respect to the thermally cured system using ytterbium triflate as cationic thermal initiator. As a consequence, photocured materials exhibited a superior thermal stability and lower flexibility. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5446–5458, 2007  相似文献   

14.
The kinetics and mechanism of the photoinitiated polymerization of 1,6‐hexanediol dimethacrylate (HDDMA) in a poly(methyl methacrylate) (PMMA) matrix were studied. The maximum double‐bond conversion, the maximum polymerization rate, the intrinsic reactivity, and the kinetic constants for propagation and termination were calculated. For this system, a reaction‐diffusion termination mechanism occurred from the start of the polymerization, and it was predominantly maintained until high monomer concentrations, probably because of the relatively high intermolecular attraction force between the PMMA matrix and HDDMA monomer. In addition, a comparative study of the photoinitiated polymerization of methacrylic monomers in four different polymeric matrices [styrene–butadiene–styrene (SBS), polystyrene (PS), polybutadiene (PB), and PMMA] was carried out. The aggregation state, vitreous or rubbery, of the monomer–matrix system and the intermolecular strength of attraction in the monomer–matrix system and growing macroradical and matrix systems were the principal factors influencing the kinetic and mechanistic behavior of these systems. When PB and SBS were used as matrices, crosslinked polymerized products were obtained as a result of the participation of double bonds of the matrix in the polymerization process (copolymerization). PS sequences in the SBS and PS matrices also took part in the polymerization process through the coupling of the benzylic radical to the growing macroradical. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 120–127, 2002  相似文献   

15.
A new di‐tert‐butyl acrylate (diTBA) monomer for controlled radical polymerization is reported. This monomer complements the classical use of tert‐butyl acrylate (TBA) for synthesis of poly(acrylic acid) by increasing the density of carboxylic acids per repeat unit, while also increasing the flexibility of the carboxylic acid side‐chains. The monomer is well behaved under Cu(II)‐mediated photoinduced controlled radical polymerization and delivers polymers with excellent chain‐end fidelity at high monomer conversions. Importantly, this new diTBA monomer readily copolymerizes with TBA to further the potential for applications in areas such as dispersing agents and adsorbents. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 801–807  相似文献   

16.
Thiophenol and p‐nitrothiophenol were evaluated as promoters for the ring opening polymerization of benzoxazine. The ring‐opening polymerization of p‐cresol type monofunctional N‐phenyl benzoxazine 1a with 10 mol % of thiophenols proceeded at 150 °C, leading to the high conversion of 1a more than 95% within 5 h, whereas the polymerization of 1a without thiophenols did not proceed under the same conditions. The promotion effect of the thiophenols on curing of bisphenol‐A type N‐phenyl benzoxazine 1b was also investigated. In the differential scanning calorimetric (DSC) analysis of the polymerization of 1b at 150 °C without using any promoters, an exothermic peak attributable to the ring‐opening reaction of benzoxazine was observed after 8 h. In contrast, in the DSC analysis of the polymerization of 1b with addition 20 mol % of p‐nitrothiophenol, an exothermic peak was observed within 2 h, to clarify the significant promoting effect of p‐nitrothiophenol. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2523–2527  相似文献   

17.
The photocuring process of widely used 3,4‐epoxycyclohexylmethyl 3′,4′‐epoxycyclohexane carboxylate has been investigated with differential scanning photocalorimetry and attenuated total reflection/Fourier transform infrared. Mixed salts of triarylsulfonium hexafluoroantimonate have been employed as the photoinitiator. The photocuring of the biscycloaliphatic resins exhibits a complex behavior: the overall heat of reaction (including dynamic thermal postcuring) depends on the photocuring temperature, surprisingly high reaction rates are observed at lower photocuring temperatures, and the range of the glass transition of the fully cured material broadens and shifts to higher temperatures as the photocuring temperature increases. It is assumed that the balance between the initiation step and the propagation step is responsible for the changes in the reaction mechanism that produce the observed experimental results. This balance may depend on the amount of the photoinitiator, the irradiation intensity, and the photocuring temperature. The structure and final properties of the material may therefore depend on the adjustment of these parameters. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 16–25, 2007  相似文献   

18.
Naphthalimide‐phthalimide derivatives (NDPDs) have been synthesized and combined with an iodonium salt, N‐vinylcarbazole, amine or 2,4,6‐tris(trichloromethyl)‐1,3,5‐triazine to produce reactive species (i.e., radicals and cations). These generated reactive species are capable of initiating the cationic polymerization of epoxides and/or the radical polymerization of acrylates upon exposure to very soft polychromatic visible lights or blue lights. Compared with the well‐known camphorquinone based systems used as references, the novel NDPD based combinations employed here demonstrate clearly higher efficiencies for the cationic polymerization of epoxides under air as well as the radical polymerization of acrylates. Remarkably, one of the NDPDs (i.e., NDPD2) based systems is characterized by an outstanding reactivity. The structure/reactivity/efficiency relationships of the investigated NDPDs were studied by fluorescence, cyclic voltammetry, laser flash photolysis, electron spin resonance spin trapping, and steady state photolysis techniques. The key parameters for their reactivity are provided. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 665–674  相似文献   

19.
The synthesis and molecular characterization of a series of conformationally asymmetric polystyrene‐block‐poly(1,3‐cyclohexadiene) (PS‐b‐PCHD) diblock copolymers (PCHD: ~90% 1,4 and ~10% 1,2), by sequential anionic copolymerization high vacuum techniques, is reported. A wide range of volume fractions (0.27 ≤ ?PS ≤ 0.91) was studied by transmission electron microscopy and small‐angle X‐ray scattering in order to explore in detail the microphase separation behavior of these flexible/semiflexible diblock copolymers. Unusual morphologies, consisting of PCHD core(PCHD‐1,4)–shell(PCHD‐1,2) cylinders in PS matrix and three‐phase (PS, PCHD‐1,4, PCHD‐1,2) four‐layer lamellae, were observed suggesting that the chain stiffness of the PCHD block and the strong dependence of the interaction parameter χ on the PCHD microstructures are important factors for the formation of this unusual microphase separation behavior in PS‐b‐PCHD diblock copolymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1564–1572  相似文献   

20.
Photopolymerizable clear coatings based on bio‐sourced acrylates, dedicated to the protection of polycarbonate substrates, were studied. The bio‐sourced compounds were not based on triglycerides but were smaller, industrially available molecules similar to classical petro‐based monomers. Their polymerization kinetics was studied by photo‐DSC and was shown to allow high acrylate conversions even at 25 °C. Closely related coatings enriched in alkyl segments, or in monoacrylates to decrease the crosslinking density, were compared. The material composition affects its nanomorphology deduced from X‐ray diffraction. Although these changes in composition can slightly shift the mechanical relaxation, it remains wide, and the elastic modulus remains high (>108 Pa) for all the tested materials. Microscratch experiments highlighted the efficiency of all the new coatings in terms of protection against scratches. Incorporating a monoacrylate, particularly isobornyl acrylate, can improve the scratch resistance especially in terms of critical load (up to 175% increase compared with a classical petro‐based coating). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 379–388  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号