首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, Multi‐Walled Carbon Nanotubes (MWCNTs) of varying diameters, both untreated and polycarboxylated, were dispersed at constant weight percentage in an epoxy matrix, and resulting fracture toughnesses (KIc) were measured in each case. We show that changing the MWCNT diameter has two effects on the composite fracture toughness: (i) a small MWCNT diameter enables larger interfacial surface for adhesion maximization, which increases toughness; (ii) at the same time, it limits the available pull‐out energy and reduces the MWCNT ability to homogeneously disperse in the matrix due to this same large active surface: this decreases toughness. Most commercially available MWCNTs have a length range of several μm, thus an optimal diameter exists which depends on MWCNT wall thickness and surface treatment. Such optimal diameter maximizes pull‐out energy and thus composite fracture toughness. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

2.
Poly(methyl methacrylate)/multiwalled carbon nanotube (PMMA/MWCNT) microspheres were successfully prepared by in situ dispersion polymerization in an alcohol phase in which the acid‐treated MWCNTs were dispersed before polymerization. The PMMA and PMMA/MWCNT microspheres were monodisperse. The diameters of the microspheres decreased from about 11.6–6.0 μm as the MWCNT content was increased from 0 to 0.03 wt %. The morphology of the PMMA/MWCNT microspheres was investigated by scanning electron microscopy, atomic force microscopy, and transmission electron microscopy, and the experimental results showed that the MWCNTs were present both in the interior and on the surface of the microspheres. The synthesized PMMA/MWCNT microspheres were also characterized by electrical resistance measurements to analyze their electrical conductivity. They showed electrorheological (ER) fluid characteristics when they were dispersed in silicone oil. Their ER properties were confirmed by using optical microscopy to examine a suspension of the PMMA/MWCNT microspheres dispersed in insulating silicone oil to which an electric field of 2.5 kV/cm was applied. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 182–189, 2008  相似文献   

3.
The in situ grafting‐from approach via atom transfer radical polymerization was successfully applied to polystyrene, poly(styrene‐co‐acrylonitrile), and polyacrylonitrile grafted onto the convex surfaces of multiwalled carbon nanotubes (MWCNTs) with (2‐hydroxyethyl 2‐bromoisobutyrate) as an initiator. Thermogravimetric analysis showed that effective functionalization was achieved with the grafting approach. The grafted polymers on the MWCNT surface were characterized and confirmed with Fourier transform infrared spectroscopy and nuclear magnetic resonance. Raman and near‐infrared spectroscopy revealed that the grafting of polystyrene, poly(styrene‐co‐acrylonitrile), and polyacrylonitrile slightly affected the side‐wall structures. Field emission scanning electron microscopy showed that the carbon nanotube surface became rough because of the grafting of the polymers. Differential scanning calorimetry results indicated that the polymers grafted onto MWCNTs showed higher glass‐transition temperatures. The polymer‐grafted MWCNTs exhibited relatively good dispersibility in an organic solvent such as tetrahydrofuran. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 460–470, 2007  相似文献   

4.
A series of poly(ethylene terephthalate)/multi‐walled carbon nanotubes (PET/MWCNTs) nanocomposites were prepared by in situ polymerization using different amounts of multi‐walled carbon nanotubes (MWCNTs). The polymerization of poly(ethylene terephthalate) (PET) was carried out by the two‐stage melt polycondensation method. The intrinsic viscosity (IV) of the composites is ranged between 0.31 and 0.63 dL/g depending on the concentration of the MWCNTs. A decrease of IV was found by increasing MWCNTs content. This is due to the reactions taking place between the two components leading to branched and crosslinked macromolecules. These reactions are, mainly, responsible for thermal behavior of nanocomposites. The melting point of the nanocomposites was shifted to slightly higher temperatures by the addition till 0.55 wt % of MWCNTs while for higher concentration was reduced. The degree of crystallinity in all nanocomposites was, also, reduced by increasing MWCNTs amount. However, from crystallization temperature, it was found that MWCNTs till 1 wt % can enhance the crystallization rate of PET, whereas at higher content (2 wt %), the trend is the opposite due to the formation of crosslinked macromolecules. From the extended crystallization analysis, it was proved that MWCNTs act as nucleating agents for PET crystallization. Additionally, the crystallization mechanism due to the existence of MWCNT becomes more complicated because two mechanisms with different activation energies are taking place in the different degrees of crystallization, depending on the percentage of MWCNT. The effect of molecular weight also plays an important role. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1452–1466, 2009  相似文献   

5.
Composites of multiwall carbon nanotubes (MWCNTs) and sulfonated polyaniline (SPAN) were prepared through the oxidative polymerization of a mixture of aniline, 2,5‐diaminobenzene sulfonic acid, and MWCNTs. Fe, Pd, or Fe–Pd alloy nanoparticles were embedded into the MWCNT–SPAN matrix by the reduction of Fe, Pd, or a mixture of Fe and Pd ions with γ radiation. Sulfonic acid groups and the emeraldine form of backbone units in SPAN served as the source for the reduction of the metal ions in the presence of γ radiation. The existence of metallic/alloy particles in the MWCNT–SPAN matrix was further ascertained through characterization by high‐resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, thermogravimetric analysis, and conductivity measurements. HRTEM pictures clearly revealed the existence of Fe, Pd, and Fe–Pd nanoparticles of various sizes in the MWCNT–SPAN matrices. There were changes in the electronic properties of the MWCNT–SPAN–M composites due to the interaction between the metal nanoparticles and MWCNT–SPAN. Metal‐nanoparticle‐loaded MWCNT–SPAN composites (MWCNT–SPAN–M; M = Fe, Pd, or Fe–Pd alloy) showed better thermal stability than the pristine polymers. The conductivity of the MWCNT–SPAN–M composites was approximately 1.5 S cm?1, which was much higher than that of SPAN (2.46 × 10?4 S cm?1). Metal/alloy‐nanoparticle‐embedded, MWCNT‐based composite materials are expected to find applications in molecular electronics and other fields. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3355–3364, 2006  相似文献   

6.
Structural and morphological behavior under stress–strain of polypropylene/multi‐walled carbon nanotubes (PP/MWCNTs) nanocomposites prepared through ultrasound‐assisted melt extrusion process was studied by means of optical microscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, small angle X‐ray scattering (SAXS), and wide angle X‐ray scattering (WAXS). A high ductile behavior was observed in the PP/MWCNT nanocomposites with low concentration of MWCNTs. This was related to an energy‐dissipating mechanism, achieved by the formation of an ordered PP‐CNTs interphase zone and crystal oriented structure in the undeformed samples. Different strain‐induced‐phase transformations were observed by ex situ SAXS/WAXS, characterizing the different stages of structure development during the deformation of PP and PP/MWCNTs nanocomposites. The high concentration of CNTs reduced the strain behavior of PP due to the agglomeration of nanoparticles. A structural pathway relating the deformation‐induced phase transitions and the dissipation energy mechanism in the PP/MWCNTs nanocomposites at low concentration of nanoparticles was proposed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 475–491  相似文献   

7.
This study aims to investigate the curing behavior of a vinyl ester‐polyester resin suspensions containing 0.3 wt % of multiwalled carbon nanotubes with and without amine functional groups (MWCNTs and MWCNT‐NH2). For this purpose, various analytical techniques, including Differential Scanning Calorimetry (DSC), Fourier infrared spectroscopy (FTIR), Raman Spectroscopy, and Thermo Gravimetric Analyzer (TGA) were conducted. The resin suspensions with carbon nanotubes (CNTs) were prepared via 3‐roll milling technique. DSC measurements showed that resin suspensions containing CNTs exhibited higher heat of cure (Q), besides lower activation energy (Ea) when compared with neat resin. For the sake of simplicity of interpretation, FTIR investigations were performed on neat vinyl ester resin suspensions containing the same amount of CNTs as resin. As a result, the individual fractional conversion rates of styrene and vinyl ester were interestingly found to be altered dependent on MWCNTs and MWCNT‐NH2. The findings obtained from RS measurements of the cured samples are highly proportional to those obtained from FTIR measurements. TGA measurements revealed that CNT modified nanocomposites have higher activation energy of degradation (Ed) compared with the cured polymer. The findings obtained revealed that CNTs with and without amine functional groups alter overall thermal curing response of the surrounding matrix resin, which may probably impart distinctive characteristics to mechanical behavior of the corresponding nanocomposites achieved. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1511–1522, 2009  相似文献   

8.
This study presents a novel photothermal drawing of poly(ethylene terephthalate) (PET)/multiwalled carbon nanotube (MWCNT) fibers. The photothermal drawing was carried out using the near infrared laser‐induced photothermal properties of MWCNTs. An uniform fiber surface was obtained from a continuous necking deformation of the undrawn fibers, particularly at a draw ratio of 4 and higher. The breaking stress and modulus of the photothermally drawn PET/MWCNT fibers were significantly enhanced, in comparison to those of hot drawn fibers at the same draw ratio. The enhanced mechanical properties were ascribed to the increased orientation of PET chains and MWCNTs as well as PET crystallinity due to photothermal drawing. In particular, a significantly higher degree of orientation of the MWCNTs along the fiber axis was obtained from photothermal drawing, as shown in polarized Raman spectra measurements. The photothermal drawing in this study has the potential to enhance the mechanical properties of fibers containing MWCNTs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 603–609  相似文献   

9.
Size‐controllable polypyrrole (PPy)/multiwalled carbon nanotube (MWCNT) composites have been synthesized by in situ chemical oxidation polymerization directed by various concentrations of cationic surfactant cetyltrimethylammonium bromide (CTAB). Raman spectra, FTIR, SEM, and TEM were used to characterize their structure and morphology. These results showed that the composites are core (MWCNT)–shell (PPy) tubular structures with the thickness of the PPy layer in the range of 20–40 nm, depending on the concentration of CTAB. Raman and FTIR spectra of the composites are almost identical to those of PPy alone. The electrical conductivities of these composites are 1–2 orders of magnitude higher than those of PPy without MWCNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6449–6457, 2006  相似文献   

10.
A novel amphiphilic miktoarm star polymer, polystyrene‐poly(ethylene glycol)‐poly(methyl methacrylate), bearing a pyrene group at the end of PS arm (Pyrene‐PS‐PEG‐PMMA) was successfully synthesized via combination of atom transfer radical polymerization and click chemistry. The structure and composition of the amphiphilic miktoarm star polymer were characterized by gel permeation chromatography and 1H NMR. The functionalization of multiwalled carbon nanotubes (MWCNTs) via “π–π” stacking interactions with pyrene‐PS‐PEG‐PMMA miktoarm star polymer was accomplished and the resulting polymer‐MWCNTs hybrid was analyzed by using 1H NMR, UV–vis, fluorescence spectroscopy, and thermal gravimetric analysis. The high‐resolution transmission electron microscopy and analytical techniques aforementioned confirmed that the noncovalent functionalization of MWCNT's with the amphiphilic miktoarm star polymer was successfully achieved. The MWCNT/pyrene‐PS‐PEG‐PMMA exhibited significant dispersion stability in common organic solvents such as dimethyl formamide, chloroform, and tetrahydrofuran. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
A new compatibilizer, poly(vinyl benzyloxy ethyl naphthalene)‐graft‐poly(methyl methacrylate), for poly(styrene‐co‐acrylonirile) (SAN)/multi‐walled carbon nanotubes (MWCNTs) composites was synthesized. It has been identified that naphthalene unit in backbone of compatibilizer interacts with MWCNTs via π? π interaction and that the PMMA graft of the compatibilizer is miscible with the SAN matrix. When a small amount of compatibilizer was added to SAN/MWCNT composites, MWCNTs were more homogeneously dispersed in SAN matrix than the case without compatibilizer, indicating that the compatibilizer improves the compatibility between SAN and MWCNTs. As a consequence, mechanical and electrical properties of the composites with compatibilizer were largely improved as compared with those of composites without compatibilizer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4184–4191, 2010  相似文献   

12.
Patterned MWCNT/polydimethylsiloxane (PDMS) nanocomposite strain sensors were achieved by a microelectromechanical system assisted electrophoretic deposition (EPD) technique. With the combined effect of superior intrinsic piezoresistivity of the individual MWCNT and the tunneling effect of the MWCNT network, the stretchable composite demonstrates high sensitivity to the tensile strain. The gauge factor shows a strong dependence on both the initial resistance of the CNT/PDMS composite and the applied strain level. The mechanism is elucidated by analyzing the structure‐property‐function of patterned CNT networks. When the entanglement of a MWCNT network allows effective load transfer, the sensitivity is primarily dominated by the intrinsic piezoresistivity of individual MWCNTs. Conversely, when the MWCNTs interpenetrate loosely, the tunneling effect prevails. The sensitivity of the device can be tailored by the proposed technique since MWCNT film thickness/density can be readily controlled by means of the patterning parameters of the EPD process. The work provides useful guidance for design and development of strain/stress sensors with targeted sensitivity for flexible electronics applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1505–1512  相似文献   

13.
In this work, successful polymer coating of COOH‐functionalized multiwalled carbon nanotubes (MWCNTs) via reversible addition fragmentation chain transfer (RAFT) mediated emulsion polymerization is reported. The method used amphiphilic macro‐RAFT copolymers as stabilizers for MWCNT dispersions, followed by their subsequent coating with poly(methyl methacrylate‐co‐butyl acrylate). Poly(allylamine hydrochloride) was initially used to change the charge on the surface of the MWCNTs to facilitate adsorption of negatively charged macro‐RAFT copolymer onto their surface via electrostatic interactions. After polymerization, the resultant latex was found to contain uniform polymer‐coated MWCNTs where polymer layer thickness could be controlled by the amount of monomer fed into the reaction. The polymer‐coated MWCNTs were demonstrated to be dispersible in both polar and nonpolar solvents. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
The Pt–Ni alloy nanoparticles with different Pt/Ni atomic ratios supported on functionalized multiwalled carbon nanotubes surface were synthesized via an impregnation-reduction method. The nanocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical techniques. XRD demonstrated that Pt was alloyed with Ni. TEM showed that the Pt–Ni alloy nanoparticles were uniformly dispersed on the multiwalled carbon nanotubes (MWCNTs) surface, indicating appropriate amount of Ni in Pt–Ni alloy which facilitates the dispersion of nanoparticles on the MWCNT surface. XPS revealed that the Pt 4f peak in Pt–Ni/MWCNT (4:1) catalyst shifted to a lower binding energy compared with Pt/MWCNT catalyst, and nickel oxides/hydroxides such as NiO, Ni(OH)2, and NiOOH were on the surface of Pt–Ni nanoparticles. Electrochemical data based on cyclic voltammetry and chronoamperometric curves indicated that Pt–Ni (4:1) alloy nanoparticles exhibited distinctly higher activity and better stability than those of Pt/MWCNTs toward methanol oxidation in alkaline media.  相似文献   

15.
《先进技术聚合物》2018,29(3):1182-1190
The attempt of this research was to examine the effect of multiwalled carbon nanotube (MWCNT)‐Valine as efficient fillers on the thermal, optical, and electrical behaviors of polystyrene (PS). To reduce aggregation and obtain uniform spreading of fillers into the PS, at first, MWCNTs' surfaces were modified by Valine amino acid. Then, different contents of MWCNT‐Valine (0.5, 1, and 2 wt%) were added to PS by ultrasonication processes. The field emission scanning electron microscopy and transmission electron microscopy results showed a uniform distribution of modified MWCNTs into the matrix. The thermal properties of nanocomposites were improved by increasing nanofiller content. In addition, embedding of MWCNT‐Valine into the PS matrix increased the electrical conductivity of nanocomposites in comparison with pure PS.  相似文献   

16.
A novel chemical method based on ultrasonic assisted polyol synthesis for the fabrication of highly dispersed Pt nanoparticles on multi-walled carbon nanotubes (MWCNTs) was developed. The simple and green method took only about 10 min at ambient temperature. The structure and chemical nature of the resulting Pt/MWCNT composites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive X-ray spectrometry (EDS). The results showed that the prepared Pt nanoparticles were uniformly dispersed on the MWCNT surface. The mean size of Pt nanoparticles was about 2.8 nm. Electrochemical properties of Pt/MWCNT electrode for methanol oxidation were examined by cyclic voltammetry (CV) and excellent electrocatalytic activities could be observed. The possible formation mechanism of Pt/MWCNTs was also discussed.  相似文献   

17.
Linear low‐density polyethylene (LLDPE) was melt‐mixed with multiwalled carbon nanotubes (MWCNTs) and varying amounts of three different kinds of talc (phyllo silicate), each with a different particle size distribution, to examine the effect of these filler combinations with regards to the electrical percolation behavior. The state of the filler dispersion was assessed using transmission light microscopy and electron microscopy. The use of talc as a second filler during the melt mixing of LLDPE/MWCNT composites resulted in an improvement in the dispersion of the MWCNTs and a decrease of the electrical percolation threshold. Talc with lower particle sizes showed a more pronounced effect than talc with larger particle sizes. However, the improvement in dispersion was not reflected in the mechanical properties. Modulus and stress values increase with both, MWCNT and talc addition, but not in a synergistic manner. The crystallization behavior of the composites was studied by differential scanning calorimetry to determine its potential influence on the electrical percolation threshold. It was found that the crystallinity of the matrix increased slightly with the addition of talc but no further increments were observed with the incorporation of the MWCNTs. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1680–1691  相似文献   

18.
Polystyrene‐grafted multiwalled carbon nanotubes (PS‐g‐MWNTs) with a hairy‐rod nanostructure were synthesized by the in situ free‐radical polymerization of styrene in the presence of multiwalled carbon nanotubes (MWNTs) terminated with vinyl groups. To quantitatively study the molecular weight and composition of polystyrene (PS) chains in PS‐g‐MWNTs, PS‐g‐MWNTs were fully defunctionalized by hydrolysis. The results showed that 1 of every 100 carbon atoms in MWNTs was functionalized at the tips and outer walls of the carbon nanotubes and grafted by PS with a weight‐average molecular weight of 9800 g/mol; therefore, a uniform thin layer (ca. 8–10 nm) of a PS shell was formed on the outer wall of MWNTs. PS‐g‐MWNTs were soluble in dimethylformamide and tetrahydrofuran. The thermal stability and glass‐transition temperature of PS in PS‐g‐MWNTs were obviously increased. Nanopins were formed on the glass substrates by the self‐assembly of PS‐g‐MWNTs, and the dewetting effect between the glass substrate and PS chains covered MWNTs during the evaporation of the solution. Both the length and diameter of the nanopins increased with the solution concentration. When PS‐g‐MWNTs were compression‐molded, MWNTs were dispersed uniformly in the PS matrix and formed good networks, such as circlelike and starlike structures, because of the entanglements of hairy PS chains on MWNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3869–3881, 2006  相似文献   

19.
Fe3O4 nanoparticles were indirectly implanted onto functionalized multi‐walled carbon nanotubes (MWCNTs) leading to a nanocomposite with stronger magnetic performance. Poly(acrylic acid) (PAA) oligomer was first reacted with hydroxyl‐functionalized MWCNTs (MWCNTs‐OH) forming PAA‐grafted MWCNTs (PAA‐g‐MWCNTs). Subsequently, Fe3O4 nanoparticles were attached onto the surface of PAA‐g‐MWCNTs through an amidation reaction between the amino groups on the surface of Fe3O4 nanoparticles and the carboxyl groups of PAA. Fourier transform infrared spectra confirmed that the Fe3O4 nanoparticles and PAA‐g‐MWCNTs were indeed chemically linked. The morphology of the nanocomposites was characterized using transmission electron microscope (TEM). The surface and bulk structure of the nanocomposites were examined using X‐ray diffraction, X‐ray photoelectron spectrometer (XPS), and thermogravimetric analysis (TGA). The magnetic performance was characterized by vibrating sample magnetometer (VSM) and the magnetic saturation value of the magnetic nanocomposites was 47 emu g?1. The resulting products could be separated from deionized water under an external magnetic field within about 15 s. Finally, the magnetorheological (MR) performances of the synthesized magnetic nanocomposites and pure Fe3O4 nanoparticles were examined using a rotational rheometer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

20.
Matrix‐polymer‐functionalized multiwalled carbon nanotubes (MWCNTs) are demonstrated as a highly efficient toughening agent for matrix polymers. With poly(vinylidene fluoride) (PVDF) as the matrix polymer, the PVDF/MWCNT‐PVDF nanocomposite films show high toughness. With a small load amount of MWCNT‐PVDF (0.07 wt %), the nanocomposite film shows a yield point and a constant‐stress extension region in stress–strain tests, compared with the typical low‐extensibility feature of neat PVDF film. The PVDF/MWCNT‐PVDF‐0.7 film exhibits a 180‐fold increase of toughness and about 38‐fold increase in strain at break compared with neat PVDF film. This toughening effect is attributed to (a) homogeneous dispersion of MWCNT‐PVDF in PVDF, (b) the high efficiency of load‐transfer across MWCNT/PVDF interface, and (c) the long length of the MWCNTs. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号