首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two H‐bonded acceptor (H‐acceptor) homopolymers 14 and 17 were successfully prepared by polymerization of fluorescent pyridyl monomers PBT and PBOT ( 12 and 13 ), which were synthesized via Sonogashira coupling and Wittig‐Horner reactions. To increase the glass transition temperatures as well as reduce the π‐π stacking of the photoluminescent (PL) H‐acceptor copolymers and their H‐bonded polymer complexes, fluorescent monomers 12 and 13 were copolymerized with N‐vinylcarbazole monomer CAZ (23) to produce H‐acceptor copolymers 15–16 and 18–19 . Supramolecular side‐chain and crosslinking polymers (i.e., H‐bonded polymer complexes) obtained by complexation of light‐emitting H‐acceptor polymers 14–19 with various proton donor (H‐donor) acids 20–22 were further characterized by DSC, POM, FTIR, XRD, and PL measurements. The mesomorphic properties can be tuned from the nematic phase in H‐acceptor homopolymers ( 14 and 17 ) to the tilted smectic C phase in their H‐bonded polymer complexes ( 14/20–21 and 17/20–22 ) by the introduction of H‐donor acids (20–22). Moreover, the PL properties of light‐emitting H‐acceptor polymers can be adjusted not only by the central structures of the conjugated pyridyl cores but also by their surrounding nonfluorescent H‐donor acids. In general, redder shifts of PL emissions in H‐bonded polymer complexes occurred when the light‐emitting H‐acceptor polymers were complexed with H‐donors having smaller pKa values. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2734–2753, 2009  相似文献   

2.
Three kinds of dithienothiophene/carbazole‐based conjugated polymers ( P1–P3 ), which bear acid‐protected and benzoic acid pendants in P2 and P3 , respectively, were synthesized via Suzuki coupling reaction. Interestingly, P1 – P3 exhibited reversible electrochromism during the oxidation processes of cyclic voltammogram studies, and P3 (with H‐bonds) revealed the best electrochromic property with the most noticeable color change. According to powder X‐ray diffraction (XRD) analysis, these polymers exhibited obvious diffraction features indicating bilayered packings between polymer backbones and π‐π stacking between layers in the solid state. Compared with the XRD data of P2 (without H‐bands), H‐bonds of P3 induced a higher crystallinity in the small‐angle region (corresponding to a higher ordered bilayered packings between polymer backbones), but with a similar crystallinity in the wide angle region indicating a comparable π‐π stacking distance between layers. Moreover, based on the preliminary photovoltaic properties of PSC devices ( P1 – P3 blended individually with PCBM acceptor in the weight ratio of 1:1), P3 (with H‐bonds) possessed the highest power conversion efficiency of 0.61% (with Jsc = 2.26 mA/cm2, FF = 29.8%, and Voc = 0.9 V). In contrast to P2 (without H‐bands), the thermal stability, crystallinity, and electrochromic along with photovoltaic properties of P3 were generally enhanced due to its H‐bonded effects. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
Five novel conjugated copolymers ( P1 – P5 ) containing coplanar cyclopentadithiophene (CPDT) units (incorporated with arylcyanovinyl and keto groups in different molar ratios) were synthesized and developed for the applications of polymer solar cells (PSCs). Polymers P1 – P5 covered broad absorption ranges from UV to near infrared (400–900 nm) with narrow optical band gaps of 1.38–1.70 eV, which are compatible with the maximum solar photon reflux. Partially reversible p‐ and n‐doping processes of P1 – P5 in electrochemical experiments were observed, and the proper molecular design for highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) levels of P1 – P5 induced the highest photovoltaic open‐circuit voltage in the PSC devices, compared with those previously reported CPDT‐based narrow‐band‐gap polymers. Powder X‐ray diffraction (XRD) analyses suggested that these copolymers formed self‐assembled π‐π stacking and pseudobilayered structures. Under 100 mW/cm2 of AM 1.5 white‐light illumination, bulk heterojunction PSC devices containing an active layer of electron donor polymers P1 – P5 mixed with electron acceptor [6,6]‐phenyl C61 butyric acid methyl ester (PCBM) in the weight ratio of 1:4 were investigated. The PSC device containing P1 gave the best preliminary result with an open‐circuit voltage of 0.84 V, a short‐circuit current of 2.36 mA/cm2, and a fill factor of 0.38, offering an overall power conversion efficiency (PCE) of 0.77% as well as a maximal quantum efficiency of 23% from the external quantum efficiency (EQE) measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2073–2092, 2009  相似文献   

4.
A series of diblock‐copolymers were synthesized through anionic polymerization of styrene and tert‐butyl methacrylate (tBuA) with different monomer ratios, and analogous block‐copolymeric derivatives (PS‐b‐PAA)s with monofunctional carboxylic acid groups were obtained by further hydrolyzation as hydrogen‐bonded (H‐bonded) proton donors. Via H‐bonded interaction, these diblock‐coplymeric donors (PS‐b‐PAA)s were incorporated with luminescent mono‐pyridyl/bis‐pyridyl acceptors to form single/double H‐bonded supramolecules, that is, H‐bonded side‐chain/cross‐linking copolymers, respectively. The supramolecular architectures formed by donor polymers and light‐emitting acceptors were influenced by the ratio of acid blocks in the diblock copolymeric donors and the type of single/double H‐bonded light‐emitting acceptors. Their thermal and luminescent properties can be adjusted by H‐bonds, and more than 100 nm of red‐shifted photoluminescence (PL) emissions were observed, which depend on the degrees of the H‐bonding interactions. Self‐assembled phenomena of amphiphilic dibolck copolymers and their H‐bonded complexes were confirmed by TEM micrographs, and supramolecular microphase separation of spherical micelle‐like morphology was demonstrated to affect the photophysical properties. Polymer light‐emitting diode (PLED) devices containing H‐bonded complexes showed electroluminescence (EL) emissions of 503–560 nm under turn‐on voltages of 7.5–9.0 V, maximum power efficiencies of 0.23–0.37 cd/A (at 100 mA/cm2), and maximum luminances of 318–519 cd/m2 (around 25 V). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4685–4702, 2009  相似文献   

5.
Four novel two‐dimensional (2D) donor–acceptor (D‐A) type copolymers with different conjugated side chains, P1 , P2 , P3 , and P4 (see Fig. 1 ), are designed and synthesized for the application as donor materials in polymer solar cells (PSCs). To the best of our knowledge, there were few reports to systematically study such 2D polymers with D‐A type main chains in this area. The optical energy band gaps are about 2.0 eV for P1 – P3 and 1.67 eV for P4 . PSC devices using P1 – P4 as donor and [6,6]‐phenyl‐C61‐butyric acid methyl ester as acceptor in a weight ratio of 1:3 were fabricated and characterized to investigate the photovoltaic properties of the polymers. Under AM 1.5 G, 100 mA/cm2 illumination, a high open‐circuit voltage (Voc) of 0.9 V was recorded for P3 ‐based device due to its low HOMO level, and moderate fill factor was obtained with the best value of 58.6% for P4 ‐based device, which may mainly be the result of the high hole mobility of the polymers (up to 1.82 × 10?3 cm2/V s). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Novel two‐dimensional donor–acceptor (D–A) structured conjugated polymers, P1–P4, were designed and synthesized by introducing electron‐deficient quinoxaline as core and electron‐rich alkoxyl‐phenylenevinylene in side chains and p‐phenylenevinylene, triphenylamine, or thiophene in main chain. Benefited from the D–A structures, the polymers possess low bandgaps of 1.75 eV, 1.86 eV, 1.59 eV, and 1.58 eV for P1, P2, P3, and P4, respectively, and show broad absorption band in the visible region: the shorter wavelength absorption peak at ~400 nm ascribed to the conjugated side chains and the longer wavelength absorption peak between 500 nm and 750 nm belonging to the absorption of the conjugated main chains. Especially, the absorption band of P4 film covers the whole visible range from 300 nm to 784 nm. The power conversion efficiencies of the polymer solar cells based on P1–P4 as donor and PCBM as acceptor are 0.029%, 0.14%, 0.46%, and 0.57%, respectively, under the illumination of AM 1.5, 100 mW/cm2. The polymers with the low bandgap and broad absorption band are promising photovoltaic materials. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4038–4049, 2008  相似文献   

7.
Random donor‐acceptor (D‐A) supramolecular comb polymers were formed when hydroxyl functionalized donor and acceptor small molecules based on Oligo(phenylenevinylene) (named OPVCN‐OH ) and Perylenebisimide (named UPBI‐PDP ), respectively, were complexed with Poly(4‐vinyl pyridine) (P4VP). A series of random D‐A supramolecular comb polymers were formed by varying the ratios of UPBI‐PDP and OPVCN‐OH with P4VP. A 100% P4VP‐donor polymer complex [ P4VP(OPV1.00 )] and a 100% P4VP‐acceptor polymer complex [ P4VP(UPBI1.00 )] were also synthesized and characterized. Complex formation was confirmed by FT‐IR and 1H NMR spectroscopy. Solid state structural studies carried out using small angle X‐ray scattering and wide angle X‐ray diffraction experiments revealed altered packing of the D and A molecules in the complexes. Transmission electron microscopy images showed lamellar structures in the < 10 nm scale for the P4VP(OPV1.00 ), P4VP(UPBI1.00 ), and mixed P4VP (D‐A) complexes. The effect of the nanoscopic D‐A self‐assembly on the bulk mobility of the materials was probed using SCLC measurements. The mixed D‐A random complexes exhibited ambipolar charge transport characteristics with higher values for the average bulk hole mobility estimate. P4VP(OPV0.25 + UPBI0.75) exhibited an average hole mobility in the order of 10?2cm2 V?1 s?1 and electron mobility 10?5cmV?1 s?1. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2403–2412  相似文献   

8.
Electrochromic polymers based on [1,2,5]thiadiazolo[3,4‐g]quinoxaline acceptor and thiophene, 3,4‐ethylenedioxythiophene and 3,3‐didecyl‐3,4‐proylenedioxythiophene donors, namely poly(6,7‐diphenyl‐4,9‐di(thiophen‐2‐yl)‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline) ( P1 ), poly(4‐(2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐5‐yl)‐9‐(2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐7‐yl)‐6,7‐diphenyl‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline) ( P2 ), and poly(4‐(3,3‐didecyl‐3,4‐dihydro‐2H‐thieno[3,4‐b][1,4]dioxepin‐6‐yl)‐9‐(3,3‐didecyl‐3,4‐dihydro‐2H‐thieno[3,4‐b][1,4]dioxepin‐8‐yl)‐6,7‐diphenyl‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline) ( P3 ), respectively, were electrochemically and/or chemically synthesized and characterized. Electrochemical and optical properties of the polymers were then investigated. The results, which were obtained electrochemically and optically, indicate that the polymers bearing the same acceptor and different donor units have a band gap range of 0.59–1.24 eV depending on the strength and size of the donor units and band gap determination method. A significant finding in this study was the phenomenon that when the acceptor is physically huge, the general rule that a weak donor would have a high band gap whereas a strong donor would have low band gap can be broken due to the torsional angles/steric hindrances involved with physically large donor molecules. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3483–3493  相似文献   

9.
A series of novel narrow‐band‐gap copolymers ( P1 ‐ P12 ) composed of alkyl‐substituted fluorene (FO) units and six analogous mono‐ and bis(2‐aryl‐2‐cyanovinyl)‐10‐hexylphenothiazine monomers ( M1 ‐ M6 ) were synthesized by a palladium‐catalyzed Suzuki coupling reaction with two different feed in ratios of FO to M1 ‐ M6 (molar ratio = 3:1 and 1:1). The absorption spectra of polymers P1 ‐ P12 exhibited broad peaks located in the UV and visible regions from 400 to 800 nm with optical band gaps at 1.55–2.10 eV, which fit near the wavelength of the maximum solar photon reflux. Electrochemical experiments displayed that the reversible p‐ and n‐doping processes of copolymers were partially reversible, and the proper HOMO/LUMO levels enabled a high photovoltaic open‐circuit voltage. As blended with [6,6]‐phenyl C61 butyric acid methyl ester (PCBM) as an electron acceptor in bulk heterojunction photovoltaic devices, narrow‐band‐gap polymers P1 ‐ P12 as electron donors showed significant photovoltaic performance which varied with the intramolecular donor‐acceptor interaction and their mixing ratios to PCBM. Under 100 mW/cm2 of AM 1.5 white‐light illumination, the device of copolymer P12 produced the highest preliminary result having an open‐circuit voltage of 0.64 V, a short‐circuit current of 2.70 mA/cm2, a fill factor of 0.29, and an energy conversion efficiency of 0.51%. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4285–4304, 2008  相似文献   

10.
Three donor–acceptor copolymers P1 , P2 , and P3 with N,N′‐dodecylpyromellitic diimide as the electron‐acceptor unit with three diethynyl‐substituted donor monomers: 1,4‐diethynyl‐2,5‐bis(octyloxy)benzene, 2,7‐diethynyl‐9,9‐dioctyl‐9H‐fluorene, and 3,3′‐didodecyl‐5,5′‐diethynyl‐2,2′‐bithiophene have been synthesized by Sonogashira crosscoupling polymerization. The synthesized polymers showed deep highest occupied molecular orbital energy levels and larger band gaps (>2.5 eV). Polymers P1 , P2 , and P3 underwent fluorescence quenching with [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM), indicating the intermolecular photo‐induced charge transfer between the donor polymers and the PCBM acceptor. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1617–1622  相似文献   

11.
A novel conjugated polymer, poly(thienylene‐vinylene‐thienylene) with cyano substituent ( CN‐PTVT ) was synthesized via Stille coupling for the application in air stable field‐effect transistor and polymer solar cell. The polymer was characterized by 1H NMR, elemental analysis, UV‐vis absorption and photoluminescence spectroscopy, TGA, cyclic voltammetry and XRD analysis. CN‐PTVT exhibits a good thermal stability with 5% weight loss at 306 °C. The FET hole mobility of the polymer reached 5.9 × 10?3 cm2 V?1 s?1 with Ion/Ioff ratio of 4.9 × 104, which is one of the highest performance among the air‐stable amorphous polymers. The polymer solar cell based on CN‐PTVT as donor and PCBM as acceptor shows a relatively high open‐circuit voltage of 0.82 V and a power conversion efficiency of 0.3% under the illumination of AM1.5, 100 mW/cm2. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4028–4036, 2009  相似文献   

12.
Two model polymers, containing fluorene as an electron‐donating moiety and benzothiadiazole (BT) as an electron‐accepting moiety, have been synthesized by Suzuki coupling reaction. Both polymers are composed of the same chemical composition, but the BT acceptor can be either at a side‐chain (i.e., S‐polymer) or along the polymer main chain (i.e., M‐polymer). Their optical, electrochemical, and photovoltaic properties, together with the field‐effect transistor (FET) characteristics, have been investigated experimentally and theoretically. The FET carrier mobilities were estimated to be 5.20 × 10?5 and 3.12 × 10?4 cm2 V?1 s?1 for the S‐polymer and M‐polymer, respectively. Furthermore, polymeric solar cells (PSCs) with the ITO/PEDOT:PSS/S‐polymer or M‐polymer:PC71BM(1:4)/Al structure were constructed and demonstrated to show a power conversion efficiency of 0.82 and 1.24% for the S‐polymer and M‐polymer, respectively. The observed superior device performances for the M‐polymer in both FET and PSCs are attributable to its relatively low band‐gap and close molecular packing for efficient solar light harvesting and charge transport. This study provides important insights into the design of ideal structure–property relationships for conjugate polymers in FETs and PSCs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
Four polythiophene derivatives including regiorandom polymers P1 , P2 , and P3 and a regioregular polymer P4 , containing a phenyl side chain with electron‐withdrawing carbonyl groups such as an ester and a ketone at the 3‐position of the thiophene ring, were synthesized by Stille coupling reaction. Bulk‐heterojunction polymer solar cells (PSCs) based on these polymers as p‐type semiconductors and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) were fabricated, and their photovoltaic performances were evaluated for the first time. The PSC devices based on the regioregular polymer P4 :PCBM = 1:2 (w/w) exhibited a high‐open‐circuit voltage (Voc) of 0.943 V because of the low‐lying highest occupied molecular orbit energy level of P4 . The short π–π stacking distance (0.355 nm) in the parallel direction to the substrate and “face‐on” rich orientation were observed by the grazing incidence wide‐angle X‐ray scattering experiment, which might reflect higher Jsc and FF values of the P4 :[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) PSC device than others. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 875–887  相似文献   

14.
For a complementary hydrogen‐bonded complex, when every hydrogen‐bond acceptor is on one side and every hydrogen‐bond donor is on the other, all secondary interactions are attractive and the complex is highly stable. AAA–DDD (A=acceptor, D=donor) is considered to be the most stable among triply hydrogen‐bonded sequences. The easily synthesized and further derivatized AAA–DDD system is very desirable for hydrogen‐bonded functional materials. In this case, AAA and DDD, starting from 4‐methoxybenzaldehyde, were synthesized with the Hantzsch pyridine synthesis and Friedländer annulation reaction. The association constant determined by fluorescence titration in chloroform at room temperature is 2.09×107 M ?1. The AAA and DDD components are not coplanar, but form a V shape in the solid state. Supramolecular polymers based on AAA–DDD triply hydrogen bonded have also been developed. This work may make AAA–DDD triply hydrogen‐bonded sequences easily accessible for stimuli‐responsive materials.  相似文献   

15.
A n‐type conjugated polymer containing naphthalene diimide (NDI) and 1,3,4‐thiadiazole (TZ) moieties, named PNTZ, has been synthesized and applied for all‐polymer solar cells (all‐PSCs). By the incorporation of TZ unit into the polymer main chains, the lowest unoccupied molecular orbital level of this polymer has been adjusted effectively. In addition, the electron‐acceptor PNTZ shows a broad absorption spectrum in the range of 300–700 nm, and possesses complementary absorption spectrum with the electron‐donor PTB7‐Th. On the basis of PNTZ as the acceptor and PTB7‐Th as the donor, the all‐PSCs are fabricated. After optimization, the well blend morphologies with a continuous D/A interpenetrating network are observed and the best all‐PSC device exhibits a power conversion efficiency of 4.35% with a high short‐circuit current density of 13.26 mA cm?2. This research demonstrates that the TZ‐containing polymer PNTZ is a promising non‐fullerene acceptor for high efficiency all‐PSCs. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 990–996  相似文献   

16.
A conjugated main‐chain copolymer ( PBT ) consisting of bithiazole, dithieno[3,2‐b:2′,3′‐d]pyrroles (DTP), and pendent melamine units was synthesized by Stille polymerization, which can be hydrogen‐bonded (H‐bonded) with proper molar amounts of bi‐functional π‐conjugated crosslinker F (i.e., two uracil motifs covalently attached to a fluorene core through triple bonds symmetrically) to develop a novel supramolecular polymer network ( PBT/F ). The effects of multiple H‐bonds on light harvesting capabilities, HOMO levels, and photovoltaic properties of polymer PBT and H‐bonded polymer network PBT/F are investigated. The formation of supramolecular polymer network ( PBT/F ) between PBT and F was confirmed by FTIR and XRD measurements. Because of the stronger light absorption, lower HOMO level, and higher crystallinity of H‐bonded polymer network PBT/F , the solar cell device containing PBT/F showed better photovoltaic properties than that containing polymer PBT . The preliminary results show that the solar cell device containing 1:1 weight ratio of PBT/F and [6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) offers the best power conversion efficiency (PCE) value of 0.86% with a short‐circuit current density (Jsc) of 4.97 mA/cm2, an open circuit voltage (Voc) of 0.55 V, and a fill factor (FF) of 31.5%. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
To explore the aptitude of 1,2,4‐oxadiazole‐based electron‐acceptor unit in polymer solar cell applications, we prepared four new polymers (P1–P4) containing 1,2,4‐oxadiazole moiety in their main chain and applied them to solar cell applications. Thermal, optical, and electrochemical properties of the polymers were studied using thermogravimetric, absorption, and cyclic voltammetry analysis, respectively. All four polymers showed high thermal stability (5% degradation temperature over 335 °C), and the optical band gaps were calculated to be 2.20, 1.72, 1.37, and 1.74 eV, respectively, from the onset wavelength of the film‐state absorption band. The energy levels of the polymers were found to be suitable for bulk heterojunction (BHJ) solar cell applications. The BHJ solar cells were prepared by using the synthesized polymers as a donor and PC71BM as an electron acceptor with the configuration of ITO/PEDOT:PSS/polymer:PC71BM (1:3 wt %)/LiF/Al. One of the polymers was found to show the maximum power conversion efficiency of 1.33% with a Jsc of 4.95 mA/cm2, a Voc of 0.68 V, and a FF of 40%, measured using AM 1.5 G solar simulator at 100 mW/cm2 light illumination. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

18.
Thin films composed of polycyclohexane (PCHE), zinc(II)‐5,10,15,20‐tetra‐(2‐naphthyl)porphyrin (ZnTNpP), and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) blends are prepared to investigate their potential for the controlled self‐assembly of a porphyrin/fullerene donor–acceptor complex in a polymer thin film. The compatibilities of PCHE/PCBM (p), PCHE/ZnTNpP (q), and ZnTNpP/PCBM (r) in these blends have a significant effect on the dispersion of the ZnTNpP/PCBM donor–acceptor complex in the PCHE thin film. When the compatibilities are p << q, r, and q ≈ r, the ZnTNpP/PCBM donor–acceptor complex is formed between the PCHE and PCBM phases. This concept to form a controlled self‐assembly of the ZnTNpP/PCBM donor–acceptor complex may be applied to various combinations of porphyrin/fullerene systems in polymer thin film solar cells to achieve excellent performance. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 743–746  相似文献   

19.
New diketopyrrolopyrrole (DPP)‐containing amorphous conjugated polymers, such as poly(3‐(5‐((9,10‐bis((4‐hexylphenyl)ethynyl)‐6‐(prop‐1‐ynyl)anthracen‐2‐yl)ethynyl) thiophen‐2‐yl)‐5‐(2‐hexyldecyl)‐2‐(2‐octyldodecyl)‐6‐(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) ( 4 ), and poly(3‐(5‐((2,6‐bis((4‐hexylphenyl)ethynyl)‐10‐(prop‐1‐ynyl)anthracen‐9‐yl)ethynyl)thiophen‐2‐yl)‐2,5‐bis(2‐octyldodecyl)‐6‐(thio phen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) ( 7 ), were successfully synthesized via Sonogashira coupling reactions under microwave conditions. Copolymer 7 , incorporating a DPP moiety at the 9,10‐position of the anthracene ring through a triple bond, showed a much lower bandgap energy (Eg = 1.81 eV) than copolymer 4 (Eg = 2.13 eV). Tuning of the molecular frontier orbital energies was achieved by only changing the anchoring position of dithiophenyl‐DPP from the 2,6‐ to the 9,10‐position in the anthracene ring. Because of the donor–acceptor (D–A) interaction and the two‐dimensional planar structure of the X‐shaped donor monomer, the resulting polymers showed good interchain π?π stacking in the thin‐film state, despite being amorphous polymers. When the newly synthesized polymer 7 was used as a semiconductor material in an organic thin‐film transistor, the best mobility of up to 0.12 cm2 V?1 s?1 (Ion/off = ~ 4.4 × 106) was observed, which is one of the highest values recorded for amorphous polymer films reported to date. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
A novel fused ladder alternating D–A copolymer, PIDT–DPP, with alkyl substituted indacenodithiophene (IDT) as donor unit and diketopyrrolopyrrole (DPP) as acceptor unit, was designed and synthesized by Pd‐catalyzed Stille‐coupling method. The copolymer showed good solubility and film‐forming ability combining with good thermal stability. PIDT–DPP exhibited a broad absorption band from 350 to 900 nm with an absorption peak centered at 735 nm. The optical band gap determined from the onset of absorption of the polymer film was 1.37 eV. The highest occupied molecular orbital level of the polymer is as deep as ?5.32 eV. The solution‐processed organic field‐effect transistor (OFETs) was fabricated with bottom gate/top contact geometry. The highest FET hole mobility of PIDT–DPP reached 0.065 cm2 V?1 s?1 with an on/off ratio of 4.6 × 105. This mobility is one of the highest values for narrow band gap conjugated polymers. The power conversion efficiency of the polymer solar cell based on the polymer as donor was 1.76% with a high open circuit voltage of 0.88 V. To the best of our knowledge, this is the first report on the photovoltaic properties of alkyl substituted IDT‐based polymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号