首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《先进技术聚合物》2018,29(7):2080-2090
Bio‐based epoxy resins were synthesized from nonedible resources like linseed oil and castor oil. Both the oils were epoxidized through in situ method and characterized via Fourier transform infrared and 1H‐NMR. These epoxidized oils were crosslinked with citric acid without using any catalyst and their properties compared with diglycidyl ether of bisphenol A‐epoxy. The tensile strength and modulus of epoxidized linseed oil (ELO) were found to be more than those of epoxidized castor oil (ECO)‐based network. However, elongation at break of ECO was significantly higher than that of both ELO and epoxy, which reveals its improved flexibility and toughened nature. Thermogravimetric analysis revealed that the thermal degradation of ELO‐based network is similar to that of petro‐based epoxy. Dynamic mechanical analysis revealed moderate storage modulus and broader loss tangent curve of bio‐based epoxies confirming superior damping properties. Bioepoxies exhibit nearly similar contact angle as epoxy and display good chemical resistant. The preparation method does not involve the use of any toxic catalyst and more hazardous solvents, thus being eco‐friendly.  相似文献   

2.
This study investigates the curing of epoxidized soybean oil (ESO) using dicyandiamide (DICY) and combinations of DICY with several accelerators as curing agents. The differential scanning calorimetry (DSC) results indicated that carbonyldiimidazole (CDI) is a highly efficient accelerator for the ESO‐DICY curing system. CDI accelerated ESO‐DICY curing system can gel within a short period of 13 min at 190 °C. The activation energies of the ESO‐DICY curing systems with and without CDI are 95 and 121 kJ mol?1, respectively. Similar acceleration effect was observed in the ESO‐diglycidyl ether of biphenyl A (DGEBA) blending formulations. When the molar part of the glycidyl epoxy groups of DGEBA was equal to the internal epoxy groups of ESO in the mixture, gelation of the DICY curing system accelerated by CDI was achieved in 3 min at 160 °C. Furthermore, the DSC results with FTIR analysis suggest that the stoichiometric curing molar ratio was 3 ESO epoxy units per 1 DICY molecule. Two epoxy units reacted with DICY to give secondary alcohols, while the other one linked to the nitrile group. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 375–382  相似文献   

3.
After (R)‐12‐hydroxystearic acid (HSA) was mixed at 100 °C with the castor oil‐modified poly(ε‐caprolactone) (CO‐PCL) prepared by the ring‐opening polymerization of ε‐caprolactone in the presence of castor oil, the mixture was gradually cooled to room temperature to give a solidified CO‐PCL/HSA composite. The CO‐PCL/HSA sample showed an exothermic peak at around 67–71 °C which was lower than the melting point of HSA (76.8 °C), indicating the formation of mesogenic HSA aggregates. The rheological measurement of the CO‐PCL/HSA revealed the formation of HSA organogel at around 67–55 °C during the cooling process from the melt. Furthermore, the polarized and normal optical microscopic analyses of CO‐PCL/HSA on the cooling stage revealed that anisotropic fibrous materials are formed at around 60 °C and then the fibrous network propagated over the matrix polymer. The flexural modulus and storage modulus of the CO‐PCL/HSA composite increased with increasing HSA content. The CO‐PCL/HSA composite annealed at 60 °C for 2 h on the cooling process had a higher flexural and storage modulus than the sample without annealing. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1281–1289, 2010  相似文献   

4.
Structure and properties of partially epoxidized soybean oil   总被引:1,自引:1,他引:0  
In the present study, the characteric-structure relationship of epoxidized soybean oils (ESO) with various degrees of epoxidation has been investigated. FTIR analysis was used to identify the relative extent of epoxidation of the samples during the epoxidation reaction. The viscosities of ESO were much higher than that of the raw oil, viscosity increased with degree of epoxidation. The viscous-flow activation energy of ESO was determined to be higher than that of the raw oil (20.72 to 77.93% higher). Thermogravimetry analysis (TG) of ESO was used to investigate the thermodynamic behavior of the samples. With increasing degree of epoxidation, the thermal stability of the samples initially decreased, then increased at the final reacting stage. Differential scanning calorimeter (DSC) indicated that the melting point of ESO was higher than that of soybean oil. Gel permeation chromatography (GPC) indicated the molecular mass of the samples increased initially, then decreased, with an increase in the extent of epoxidation.  相似文献   

5.
Epoxidized soybean oil (ESO) was blended as a novel plasticizer with polybutylene succinate (PBS) in a twin‐screw extruder. The effects of ESO on the mechanical and thermal properties of the PBS/ESO blends were investigated by means of tensile test, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electronic microscope. ESO improved elongation at break for PBS, which increased and then decreased with the increase in ESO. Elongation at break reached a maximum of 15 times than that for pure PBS when the ESO loading was 5 wt%. The tensile strength and modulus for the blends were lower than those for pure PBS. Compared with pure PBS, the blends exhibited lower glass transition temperature, crystallization temperature, and melting temperature. The storage modulus and tan δ peaks for the blends were lower compared with that for pure PBS. ESO had very limited compatibility with PBS, and phase separation was observed when more ESO was added. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Some discovery work was done on the synthesis of clay nanocomposites based on renewable plant oils. Functionalized triglycerides, such as acrylated epoxidized soybean oil, maleinized acrylated epoxidized soybean oil, and soybean oil pentaerythritol maleates, combined with styrene were used as the polymer matrix. The miscibility of these monomers and clay organomodifier was assessed by solubility parameters. The formation of nanocomposites was confirmed by both X‐ray data and transmission electron microscopy. The morphology showed a mix of intercalated and partially exfoliated sheets. The flexural modulus increased 30% at only 4 vol % clay content, but there was no significant effect on flexural strength, glass‐transition temperature, and thermal stability. Property enhancement was related to the degree of exfoliation that depends on both the polarity and flexibility of the monomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1441–1450, 2004  相似文献   

7.
《先进技术聚合物》2018,29(1):565-574
In the current work, renewable resourced toughened epoxy blend has been developed using epoxidized linseed oil (ELO) and bio‐based crosslinker. Epoxidation of linseed oil was confirmed through FTIR and 1H NMR spectra. The ELO bio‐resin was blended at different compositions (10, 20, and 30 phr) with a petroleum‐based epoxy (DGEBA) as reactive diluent to reduce the viscosity for better processibility and cured with cardanol‐derived phenalkamine to overcome the brittleness. The flow behavior of the neat epoxy and modified bio‐epoxy resin blend systems was analyzed by Cross model at low and high shear rates. The tensile and impact behavior studies revealed that the toughened bio‐epoxy blend with 20 to 30 phr of ELO showed moderate stiffness with much higher elongation at break 7% to 13%. Incorporation of higher amount of ELO (20 to 30 phr) increases enthalpy of curing without affecting peak temperature of curing. The thermal degradation behavior of the ELO based blends exhibits similar trend as neat epoxy. The higher intensity or broadened loss tangent curve of bio‐epoxy blends revealed higher damping ability. FE‐SEM analysis showed a rough and rippled surface of bio‐based epoxy blends ensuring effective toughening. Reduced viscosity of resin due to maximum possible incorporation of bio‐resin and use of phenalkamine as curing agent leads to an eco‐friendly toughened epoxy and can be useful for specific coating and structural application.  相似文献   

8.
As new bio‐based epoxy resin systems, glycerol polyglycidyl ether (GPE) and sorbitol polyglycidyl ether (SPE) were cured with tannic acid (TA) at various conditions. When the curing conditions were optimized for the improvement of thermal and mechanical properties, the most balanced properties were obtained for the GPE/TA and SPE/TA cured at 160 °C for 2–3 h at the epoxy/hydroxyl ratio of 1/1. The cured SPE/TA had a higher glass transition temperature (Tg) and tensile strength than the cured GPE/TA. Next, biocomposites of GPE/TA and SPE/TA with microfibrillated cellulose (MFC) were prepared by mixing aqueous solution of the epoxy/curing reagent with MFC, and subsequent drying and curing at the optimized condition. For both the GPE/TA/MFC and SPE/TA/MFC biocomposites, Tg and the storage modulus at rubbery plateau region increased with increasing MFC content over the studied range of 3–15 wt %. The tensile strength at 25 °C for GPE/TA/MFC biocomposite with MFC content 10 wt % was 76% higher than that of control GPE/TA, while the tensile modulus was little improved. On the other hand, the tensile strength and modulus of SPE/TA/MFC biocomposite with MFC content 10 wt % were 30 and 55% higher than those of control SPE/TA, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 425–433, 2010  相似文献   

9.
In this study, we report the curing of ESO with biobased dicarboxylic acids (DCAs) with different carbon chain-lengths to synthesize fully sustainable polymers. Both non-isothermal and isothermal curing processes analysis indicated that the curing rate and activation energy decreased with increasing chain-length of DCAs. The optimum COOH/epoxy molar ratio is 0.7 for preparation of ESO/DCA cured product with maximum degree of crosslinking. Addition of 4-N, N-dimethylaminopyridine (DMAP) as a catalyst can efficiently accelerate the curing rate and reduce activation energy. We systemtically studied the effect of chain-length of DCAs on the physical properties of cured products, and found that with increase in chain-length of DCAs, the glass transition temperature of the cured ESO/DCA decreased, the tensile strength and Young's modulus increased while elongation at break decreased, due to the decreased crosslinking density resulted from the increased chain-length between crosslinking sites. All cured ESO/DCA showed excellent thermal stability with initial decomposition temperature of higher than 340 °C.  相似文献   

10.
A novel epoxidized soybean oil (ESO) internally toughened phenolic resin(ESO-IT-PR) with both good toughness and excellent thermal stability was prepared as the matrix resin of copper clad laminate (CCL). FTIR was adopted to investigate the molecular structure of modified phenolic resins and SEM was used to observe the micro morphology of their impacted intersections. The properties of CCLs prepared with these modified phenolic resins were studied to determine the optimal process and investigate the toughening mechanism. The main modifying mechanism is the etherification reaction between phenol hydroxyl and ESO catalyzed by triethanolamine and the chain extension polymerization between ESO and multi-amine gives the long-chain ESO epoxy grafting on the phenolic resin prepolymer. when the ESO content is 30% and the curing agent content is 7%, the ESO toughened phenolic resin possesses optimal performance. The flexible ESO epoxy shows significant toughening effect and it crosslinks with the phenolic resin to form an internally toughened network, which is the key factor for improving the solderleaching resistance of CCL prepared with this modified phenolic resin. __________ Translated from Journal of South China University of Technology (Natural Science Edition), 2007, 35(7): 99–104 [译自: 华南理工大学学报(自然科学版)]  相似文献   

11.
《先进技术聚合物》2018,29(1):160-170
A trifunctional epoxy resin from itaconic acid (TEIA) was synthesized from a renewable resource‐based itaconic acid by allylation of itaconic acid to form diallyl itaconate by using m‐chloroperoxybenzoic acid as oxidizing agents followed by epoxidation of allylic C═C bond of diallyl itaconate methylhexahydropthalic anhydride as curing agent in the presence of 2‐methyl imidazole as a catalyst. The chemical structure of the synthesized resins was confirmed by Fourier transform infrared and nuclear magnetic resonance (1H‐NMR and 13C‐NMR) spectroscopy analysis. The mechanical, thermal, and rheological performances of the TEIA were also investigated and compared with diglycidyl ether of bisphenol A and a plant‐based epoxidized soybean oil bioresin cured with the same curing agent. The higher epoxy value of 1.02, lower viscosity (0.96 Pa s at 25°C), higher mechanical, and higher curing reactivity toward methylhexahydropthalic anhydride of TEIA as compared with epoxidized soybean oil and comparable with diglycidyl ether of bisphenol A demonstrated significant evidence to design and develop a novel bio‐based epoxy resin with high performance to substitute the petroleum‐based epoxy resin.  相似文献   

12.
We combine the supramolecular chemistry of heterocyclic ureas with the chemistry of epoxides to synthesize new crosslinked materials incorporating both chemical and supramolecular hydrogen‐bonded links. A two‐step facile and solvent‐free procedure is used to obtain chemically and thermally stable networks from widely available ingredients: epoxy resins and fatty acids. The density of both chemical and physical crosslinks is controlled by the stoichiometry of the reactants and the use of a proper catalyst to limit side reactions. Depending on the stoichiometry, a wide range of thermomechanical properties can be attained. The method can be used to produce elastomeric objects of complex shapes. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1133–1141, 2010  相似文献   

13.
The unison of vegetable oil‐based hyperbranched polymers with nanotechnology can unhook myriad of avant‐garde applications of such materials. Thus Mesua ferrea L. seed oil‐based hyperbranched polyurethane (HBPU)/clay nanocomposites and their performance, with special reference to adhesive strength, are reported for the first time. The nanocomposites of the hyperbranched polyurethane with organically modified nanoclay were obtained by ex situ solution technique and cured by bisphenol‐A‐based epoxy with poly(amido amine) hardener system. The partially exfoliated and well‐distributed structure of nanoclay was confirmed by XRD, SEM, and TEM studies. FTIR spectra indicate the presence of H‐bonding between nanoclay and the polymer matrix. Two times improvement in the adhesive strength and scratch hardness, 10 MPa increments in the tensile strength and 112°C more thermo‐stability have been observed without much affecting the impact resistance, bending, and elongation at break of the nanocomposites compared to the pristine epoxy modified HBPU system. Thus, the resulted nanocomposites are promising materials for different advanced applications including adhesive. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Classic plastics accumulate in nature causing environmental pollution, yet as a counterbalance they benefit society in many ways. They are versatile, cost‐effective, and can be tailored to have desired properties. The global environment has led to the fabrication of commodity plastics from environmentally degradable polymers. Poly(lactic acid) (PLA) is the most promising among the environmentally friendly polymers available. PLA‐based plastics have mechanical, thermal, and transparency similar to traditional plastics, and they can be molded and fabricated using the same equipment and procedures. Their material properties are enhanced through nanocomposites, compatibilizers, plasticizers, and other fillers (flame retardant, ultraviolet filter, etc.). This review summarizes mass production techniques and property reinforcements (focusing on nanocomposites and plasticizers) for PLA‐based plastics for commodity use. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Supramolecular polyurethane ureas are expected to have superior mechanical properties primarily due to the reversible, noncovalent interactions such as hydrogen bonding interactions. We synthesized polyurethane prepolymers from small molecular weight of poly(tetramethylene ether)glycol and isophorone diisocyanates, which were end capped with propylamine to synthesize polyurethane ureas with high contents of urea and urethane groups for hydrogen‐bonding formations to facilitate self‐healing. The effects of polyurethane urea molecular weight (3000 ≤ Mn ≤ 9000), crosslinking, and cutting direction were studied in terms of thermal, mechanical, and morphological properties with an emphasis on the self‐healing efficiency. It was found that the thermal self‐healability was more pronounced as the molecular weight of polyurethane urea decreased, showing a maximum of more than 96% with 3000 Mn when the sample was cut along the stretch direction. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 468–474  相似文献   

16.
Ring‐opening polymerization of epoxidized methyloleate (EMO) with various ionic‐coordinative initiators have been studied and compared with other internal epoxy monomers: benzyl 9,10‐epoxyoleoylether and cis‐4,5‐epoxyoctane. The structure and molecular weight of the resulting polymers have been studied by 1H‐ and 13C‐NMR, MALDI‐TOF‐MS, and size exclusion chromatography analysis. Polymers with higher molecular weight than those obtained with conventional cationic catalyst are obtained. These materials have been found to consist of a complex mixture of cyclic and linear polymer chains with different chain ends that can be related to the catalyst nature and the occurrence of two main polymerization mechanisms, the cationic and the ionic‐coordinative. In the polymerization of EMO, transesterification by‐side reactions leading to ester linkages in the main chain have been identified. These undesired reactions have been suppressed by copolymerization with small amounts of tetrahydrofuran with no substantial decrease in the polymer yield and molecular weight. Finally, the polymerization of EMO has been tested in a larger scale to prepare a renewable resource‐based polyether as starting material to produce polyether polyols for polyurethane applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
Currently, there are numerous papers that discuss local chiral domains in supramolecular structures of achiral molecules established using the STM method, and by using DFT calculations. However, there are no data regarding the obtainment of macroscopically chiral 2D-supramolecular structures from achiral molecules. In this study, melamine and cyanuric acid supramolecular structures were self-assembled on a graphitized carbon black surface, which had a surface structure that was identical to HOPG, and also on the surface of an inert solid support for chromatography. Chirality induction according to the Kondepudi effect was used. For the supramolecular structures, MD calculations showed the possibility of obtaining a chiral structure. To establish macroscopic chirality, we proposed the use of the difference in enantiomer adsorption on the modified adsorbents. For this, two indirect methods were used: static adsorption with a polarimetric control and gas chromatography. Both methods indicated the chiral recognition ability of the adsorbents used.  相似文献   

18.
An efficient conversion of biorenewable ferulic acid into bio‐catechol has been developed. The transformation comprises two consecutive defunctionalizations of the substrate, that is, C?O (demethylation) and C?C (de‐2‐carboxyvinylation) bond cleavage, occurring in one step. The process only requires heating of ferulic acid with HCl (or H2SO4) as catalyst in pressurized hot water (250 °C, 50 bar N2). The versatility is shown on a variety of other (biorenewable) substrates yielding up to 84 % di‐ (catechol, resorcinol, hydroquinone) and trihydroxybenzenes (pyrogallol, hydroxyquinol), in most cases just requiring simple extraction as work‐up.  相似文献   

19.
Polymers based on renewable sources are promising materials, and can find many uses in coatings and adhesive applications. The goal of this work was to synthesize and characterize bio‐based styrene/acrylated fatty acid methyl ester (AFAME) copolymer—poly(styrene‐co‐AFAME) prepared by miniemulsion polymerization. The main strategy adopted was to functionalize the bio‐monomer with acrylic acid that was confirmed by 1H NMR and FTIR measurements, to allow its free‐radical homo‐ or copolymerization with styrene. Poly(styrene‐co‐AFAME) with different AFAME content were obtained and their composition were evaluated by 1H NMR. Dynamic light scattering measurements throughout the reactions have indicated a very stable colloidal systems and average particles size ranges 100–150 nm. The structural and physical properties of poly(styrene‐co‐AFAME) were investigated by DTG‐DTA, DSC which displayed a decreasing of glass transition temperature with increase of AFAME content. The results showed in this study have indicated that the poly(styrene‐co‐AFAME) can be used in several fields because their characteristics are totally distinct. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1422–1432  相似文献   

20.
The synthesis and thermomechanical properties of a novel class of self‐healing perfluoropolyethers (PFPEs) is reported. By decoration of 2‐ureido‐4[1H]‐pyrimidone end groups on the termini of low molar mass PFPE, the formation of supramolecular polymers and networks held together via hydrogen bonding associations was achieved. These novel supramolecular polymer materials exhibit a combination of enhanced modulus and elasticity, along with self‐healing properties, where rapid self‐healing time was demonstrated using dynamic rheological measurements. These types of supramolecular PFPEs are anticipated to be useful for a number of emerging areas in lubrication. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3598–3606  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号