首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the modified homotopy perturbation method (MHPM), exact solutions of certain partial differential equations are constructed by separation of variables and choosing the finite terms of a series in p as exact solutions. Under suitable initial conditions, the PDE is transformed into an ODE. Some illustrative examples reveal the effciency of the proposed method.  相似文献   

2.
We consider variational iteration method to investigate generalized Burger–Fisher and Burger equations. In this method, general Lagrange multipliers are introduced to construct correction functionals for the problems. The multipliers in the functionals can be identified optimally via variational theory. Comparison with Adomian decomposition method reveals that the approximate solutions obtained by the proposed method converge to its exact solution faster than those of Adomian’s method. Its remarkable accuracy is finally demonstrated in the study of some values of constants in generalized Burger–Fisher and Burger equations.  相似文献   

3.
In this article, numerical solutions of the generalized Burgers–Fisher equation are obtained using a compact finite difference method with minimal computational effort. To verify this, a combination of a sixth‐order compact finite difference scheme in space and a low‐storage third‐order total variation diminishing Runge–Kutta scheme in time have been used. The computed results with the use of this technique have been compared with the exact solution to show the accuracy of it. The approximate solutions to the equation have been computed without transforming the equation and without using linearization. Comparisons indicate that there is a very good agreement between the numerical solutions and the exact solutions in terms of accuracy. The present method is seen to be a very good alternative to some existing techniques for realistic problems. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

4.
In this work, the homotopy analysis method (HAM) is applied to obtain the explicit analytical solutions for system of the Jaulent–Miodek equations. The validity of the method is verified by comparing the approximation series solutions with the exact solutions. Unlike perturbation methods, the HAM does not depend on any small physical parameters at all. Thus, it is valid for both weakly and strongly nonlinear problems. Besides, different from all other analytic techniques, the HAM provides us a simple way to adjust and control the convergence region of the series solution by means of an auxiliary parameter ?. Briefly speaking, this work verifies the validity and the potential of the HAM for the study of nonlinear systems. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

5.
In this letter, we implement a relatively new analytical technique, the homotopy perturbation method (HPM), for solving linear partial differential equations of fractional order arising in fluid mechanics. The fractional derivatives are described in Caputo derivatives. This method can be used as an alternative to obtain analytic and approximate solutions of different types of fractional differential equations applied in engineering mathematics. The corresponding solutions of the integer order equations are found to follow as special cases of those of fractional order equations. Some numerical examples are presented to illustrate the efficiency and reliability of HPM. He's HPM, which does not need small parameter is implemented for solving the differential equations. In this method, a homotopy is introduced to be constructed for the equation. The initial approximations can be freely chosen with possible unknown constants that can be determined by imposing the boundary and initial conditions. It is predicted that HPM can be found widely applicable in engineering. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

6.
In this paper, we extend the homotopy perturbation method to solve the Davey-Stewartson equations. The homotopy perturbation method is employed to compute an approximation to the solution of the equations. Computation the absolute errors between the exact solutions of the Davey-Stewartson equations and the HPM solutions are presented. Some plots are given to show the simplicity the method. The article is published in the original.  相似文献   

7.
The aim of this article is to construct a new efficient recurrent relation to solve nonlinear Burgers' equation. The homotopy perturbation method is used to solve this equation. Because Burgers' equation arises in many applications, it is worth trying new solution methods. Comparison of the results with those of Adomian's decomposition method leads to significant consequences. Four standard problems are used to illustrate the method. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

8.
In this article, we have used the homotopy perturbation method (HPM) to find the travelling wave solutions for some non-linear initial-value problems in the mathematical physics. These problems consist of the Burgers–Fisher equation, the Kuramoto–Sivashinsky equation, the coupled Schordinger KdV equations and the long–short wave resonance equations together with initial conditions. The results of these problems reveal that the HPM is very powerful, effective, convenient and quite accurate to the systems of non-linear equations. It is predicted that this method can be found widely applicable in engineering and physics.  相似文献   

9.
In this article, the homotopy perturbation method (HPM) is used to implement the modified regularized long‐wave (MRLW) equation with some initial conditions. The method is very efficient and convenient and can be applied to a large class of problems. In the last, three invariants of the motion are evaluated to determine the conservation properties of the system. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

10.
In this article, we applied homotopy perturbation method to obtain the solution of the Korteweg‐de Vries Burgers (for short, KdVB) and Lax's seventh‐order KdV (for short, LsKdV) equations. The numerical results show that homotopy perturbation method can be readily implemented to this type of nonlinear equations and excellent accuracy. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

11.
An application of the ‐expansion method to search for exact solutions of nonlinear partial differential equations is analyzed. This method is used for variants of the Korteweg–de Vries–Burger and the K(n,n)–Burger equations. The generalized ‐expansion method was used to construct periodic wave and solitary wave solutions of nonlinear evolution equations. This method is developed for searching exact traveling wave solutions of nonlinear partial differential equations. It is shown that the generalized ‐expansion method, with the help of symbolic computation, provides a straightforward and powerful mathematical tool for solving nonlinear problems. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
We performed adapted homotopy perturbation method on the Henon‐Heiles system with the help of the symbolic computation of package Maple 10 (User Manual by Maplesoft. www.maplesoft.com ). We obtained a new approximate solution of the Henon‐Heiles system. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

13.
In this study, we combined homotopy perturbation and Pade techniques for solving homogeneous and inhomogeneous two‐dimensional parabolic equation. Also, we apply our combined method for coupled Burgers' equations. The numerical results demonstrate that our combined method gives the approximate solution with faster convergence rate and higher accuracy than using the classic homotopy perturbation method. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 982–995, 2011  相似文献   

14.
In this article, we discuss the analytic solution of the fully developed shock waves. The homotopy perturbation method is used to solve the shock wave equation, which describes the flow of gases. Unlike the various numerical techniques, which are usually valid for short period of time, the solution of the presented equation is analytic for 0 < t < ∞. The results presented converge very rapidly, indicating that the method is reliable and accurate.  相似文献   

15.
This paper introduces a discrete homotopy analysis method (DHAM) to obtain approximate solutions of linear or nonlinear partial differential equations (PDEs). The DHAM can take the many advantages of the continuous homotopy analysis method. The proposed DHAM also contains the auxiliary parameter ?, which provides a simple way to adjust and control the convergence region of solution series. The convergence of the DHAM is proved under some reasonable hypotheses, which provide the theoretical basis of the DHAM for solving nonlinear problems. Several examples, including a simple diffusion equation and two-dimensional Burgers’ equations, are given to investigate the features of the DHAM. The numerical results obtained by this method have been compared with the exact solutions. It is shown that they are in good agreement with each other.  相似文献   

16.
In this study, linear and nonlinear partial differential equations with the nonhomogeneous initial conditions are considered. We used Variational iteration method (VIM) and Homotopy perturbation method (HPM) for solving these equations. Both methods are used to obtain analytic solutions for different types of differential equations. Four examples are presented to show the application of the present techniques. In these schemes, the solution takes the form of a convergent series with easily computable components. The present methods perform extremely well in terms of efficiency and simplicity. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

17.
As thermal conductivity plays an important role on fin efficiency, we tried to solve heat transfer equation with thermal conductivity as a function of temperature. In this research, some new analytical methods called homotopy perturbation method, variational iteration method, and Adomian decomposition method are introduced to be applied to solve the nonlinear heat transfer equations, and also the comparison of the applied methods (together) is shown graphically. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

18.
In this work we use the sine–cosine and the tanh methods for solving the Rosenau–KdV and Rosenau–Kawahara equations. The two methods reveal solitons and periodic solutions. The study confirms the power of the two schemes.  相似文献   

19.
In this paper, He’s homotopy perturbation method is proposed to solve nth-order integro-differential equations. The results reveal that the method is very effective and simple.  相似文献   

20.
In this paper, we propose a composite generalized Laguerre–Legendre pseudospectral method for the Fokker–Planck equation in an infinite channel, which behaves like a parabolic equation in one direction, and behaves like a hyperbolic equation in other direction. We establish some approximation results on the composite generalized Laguerre–Legendre–Gauss–Radau interpolation, with which the convergence of proposed composite scheme follows. An efficient implementation is provided. Numerical results show the spectral accuracy in space of this approach and coincide well with theoretical analysis. The approximation results and techniques developed in this paper are also very appropriate for many other problems on multiple-dimensional unbounded domains, which are not of standard types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号