首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amphiphilic diblock copolymer polycaprolactone‐block‐poly(glycidyl methacrylate) (PCL‐b‐PGMA) was synthesized via enzymatic ring‐opening polymerization (eROP) and atom transfer radical polymerization (ATRP). Methanol first initiated eROP of ?‐caprolactone (?‐CL) in the presence of biocatalyst Novozyme‐435 under anhydrous conditions. The resulting monohydroxyl‐terminated polycaprolactone (PCL–OH) was subsequently converted to a bromine‐ended macroinitiator (PCL–Br) for ATRP by esterification with α‐bromopropionyl bromide. PCL‐b‐PGMA diblock copolymers were synthesized in a subsequent ATRP of glycidyl methacrylate (GMA). A kinetic analysis of ATRP indicated a living/controlled radical process. The macromolecular structures were characterized for PCL–OH, PCL–Br, and the block copolymers by means of nuclear magnetic resonance, gel permeation chromatography, and infrared spectroscopy. Differential scanning calorimetry and wide‐angle X‐ray diffraction analyses indicated that the copolymer composition (?‐CL/GMA) had a great influence on the thermal properties. The well‐defined, amphiphilic diblock copolymer PCL‐b‐PGMA self‐assembled into nanoscale micelles in aqueous solutions, as investigated by dynamic light scattering and transmission electron microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5037–5049, 2007  相似文献   

2.
Star‐shaped amphiphilic poly(ε‐caprolactone)‐block‐poly(oligo(ethylene glycol) methyl ether methacrylate) with porphyrin core (SPPCL‐b‐POEGMA) was synthesized by combination of ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). Star‐shaped PCL with porphyrin core (SPPCL) was prepared by bulk polymerization of ε‐caprolactone (CL) with tetrahydroxyethyl‐terminated porphyrin initiator and tin 2‐ethylexanote (Sn(Oct)2) catalyst. SPPCL was converted into SPPCLBr macroinitiator with 2‐bromoisobutyryl bromide. Star‐shaped SPPCL‐b‐POEGMA was obtained via ATRP of oligo(ethylene glycol) methyl ether methacrylate (OEGMA). SPPCL‐b‐POEGMA can easily self‐assemble into micelles in aqueous solution via dialysis method. The formation of micellar aggregates were confirmed by critical micelle formation concentration, dynamic light scattering, and transmission electron microscopy. The micelles also exhibit property of temperature‐induced drug release and the lower critical solution temperature (LCST) was 60.6 °C. Furthermore, SPPCL‐b‐POEGMA micelles can reversibly swell and shrink in response to external temperature. In addition, SPPCL‐b‐POEGMA can present obvious fluorescence. Finally, the controlled drug release of copolymer micelles can be achieved by the change of temperatures. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Novel and well‐defined amphiphilic dendrimer‐star copolymer poly(ε‐caprolactone)‐block‐(poly(2‐(2‐methoxyethoxy)ethylmethacrylate‐co‐oligo(ethylene glycol) methacrylate))2 with Y‐shaped arms were synthesized by the combination of ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). The investigation of thermal properties and the analysis of crystalline morphology indicate that the high‐branched structure of dendrimer‐star copolymers with Y‐shaped arms and the presence of amorphous P(MEO2MA‐co‐OEGMA) segments together led to the complete destruction of crystallinity of the PCL segments in the dendrimer‐star copolymer. In addition, the hydrophilicity–hydrophobicity transition of the dendrimer‐star copolymer film can be achieved by altering the external temperatures. The amphiphilic copolymers can self‐assemble into spherical nanomicelles in water. Because the lower critical solution temperature of the copolymers can be adjusted by varying the ratio of MEO2MA and OEGMA, the tunable thermosensitive properties can be observed by transmittance, dynamic laser light scattering, and transmission electron microscopy (TEM). The release rate of model drug chlorambucil from the micelles can be effectively controlled by changing the external temperatures, which indicates that these unique high‐branched amphiphilic copolymers have the potential applications in biomedical field. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
Three controlled/living polymerization processes, namely atom transfer radical polymerization (ATRP), ring‐opening polymerization (ROP) and iniferter polymerization, and photoinduced radical coupling reaction were combined for the preparation of ABCBD‐type H‐shaped complex copolymer. First, α‐benzophenone functional polystyrene (BP‐PS) and poly(methyl methacrylate) (BP‐PMMA) were prepared independently by ATRP. The resulting polymers were irradiated to form ketyl radicals by hydrogen abstraction of the excited benzophenone moieties present at each chain end. Coupling of these radicals resulted in the formation of polystyrene‐b‐poly(methyl methacrylate) (PS‐b‐PMMA) with benzpinacole structure at the junction point possessing both hydroxyl and iniferter functionalities. ROP of ε‐caprolactone (CL) by using PS‐b‐PMMA as bifunctional initiator, in the presence of stannous octoate yielded the corresponding tetrablock copolymer, PCL‐PS‐PMMA‐PCL. Finally, the polymerization of tert‐butyl acrylate (tBA) via iniferter process gave the targeted H‐shaped block copolymer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4601–4607  相似文献   

5.
Novel and well‐defined pyrene‐containing eight‐arm star‐shaped dendrimer‐like copolymers were successfully achieved by combination of esterification, atom transfer radical polymerization (ATRP), divergent reaction, ring‐opening polymerization (ROP), and coupling reaction on the basis of pentaerythritol. The reaction of pentaerythritol with 2‐bromopropionyl bromide permitted ATRP of styrene (St) to form four‐arm star‐shaped polymer (PSt‐Br)4. The molecular weights of these polymers could be adjusted by the variation of monomer conversion. Eight‐hydroxyl star‐shaped polymer (PSt‐(OH)2)4 was produced by the divergent reaction of (PSt‐Br)4 with diethanolamine. (PSt‐(OH)2)4 was used as the initiator for ROP of ε‐caprolactone (CL) to produce eight‐arm star‐shaped dendrimer‐like copolymer (PSt‐b‐(PCL)2)4. The molecular weights of (PSt‐b‐(PCL)2)4 increased linearly with the increase of monomer. After the coupling reaction of hydroxyl‐terminated (PSt‐b‐(PCL)2)4 with 1‐pyrenebutyric acid, pyrene‐containing eight‐arm star‐shaped dendrimer‐like copolymer (PSt‐b‐(PCL‐pyrene)2)4 was obtained. The eight‐arm star‐shaped dendrimer‐like copolymers presented unique thermal properties and crystalline morphologies, which were different from those of linear poly(ε‐caprolactone) (PCL). Fluorescence analysis indicated that (PSt‐b‐(PCL‐pyrene)2)4 presented slightly stronger fluorescence intensity than 1‐pyrenebutyric acid when the pyrene concentration of them was the same. The obtained pyrene‐containing eight‐arm star‐shaped dendrimer‐like copolymer has potential applications in biological fluorescent probe, photodynamic therapy, and optoelectronic devices. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2788–2798, 2008  相似文献   

6.
A well‐defined amphiphilic copolymer of ‐poly(ethylene oxide) (PEO) linked with comb‐shaped [poly(styrene‐co‐2‐hydeoxyethyl methacrylate)‐graft‐poly(ε‐caprolactone)] (PEO‐b‐P(St‐co‐HEMA)‐g‐PCL) was successfully synthesized by combination of reversible addition‐fragmentation chain transfer polymerization (RAFT) with ring‐opening anionic polymerization and coordination–insertion ring‐opening polymerization (ROP). The α‐methoxy poly(ethylene oxide) (mPEO) with ω,3‐benzylsulfanylthiocarbonylsufanylpropionic acid (BSPA) end group (mPEO‐BSPA) was prepared by the reaction of mPEO with 3‐benzylsulfanylthiocarbonylsufanyl propionic acid chloride (BSPAC), and the reaction efficiency was close to 100%; then the mPEO‐BSPA was used as a macro‐RAFT agent for the copolymerization of styrene (St) and 2‐hydroxyethyl methacrylate (HEMA) using 2,2‐azobisisobutyronitrile as initiator. The molecular weight of copolymer PEO‐b‐P(St‐co‐HEMA) increased with the monomer conversion, but the molecular weight distribution was a little wide. The influence of molecular weight of macro‐RAFT agent on the polymerization procedure was discussed. The ROP of ε‐caprolactone was then completed by initiation of hydroxyl groups of the PEO‐b‐P(St‐co‐HEMA) precursors in the presence of stannous octoate (Sn(Oct)2). Thus, the amphiphilic copolymer of linear PEO linked with comb‐like P(St‐co‐HEMA)‐g‐PCL was obtained. The final and intermediate products were characterized in detail by NMR, GPC, and UV. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 467–476, 2006  相似文献   

7.
A new green solvent, cyclopentyl methyl ether (CPME), is used for the first time in solvent mixtures for the successful supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP) of both activated and non‐activated monomers. The SARA ATRP of methyl acrylate (MA), glycidyl methacrylate (GMA), styrene (Sty), and vinyl chloride (VC) in CPME‐based mixtures is studied and presents similar features to those reported in the literature using other SARA ATRP systems. Moreover, CPME‐based mixtures are suitable solvents for the controlled SARA ATRP of MA using different SARA agents, such as Fe(0), Cu(0), or Na2S2O4. The chemical structure and the retention of the chain‐end functionality of the polymers are confirmed by 1H NMR and MALDI‐TOF analyses and the preparation of a well‐defined PMA‐b‐PVC‐b‐PMA triblock copolymer. The method reported here presents an additional improvement in the search for new ecofriendly ATRP systems. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2722–2729  相似文献   

8.
Well‐defined macromonomers of poly(ethylene oxide) and poly(tert‐butyl methacrylate) were obtained by anionic polymerization induced directly by the carbanion issued from 2‐methyl‐2‐oxazoline. When ethylene oxide was added to this carbanion with lithium as the counterion, a new compound able to initiate the polymerization of ε‐caprolactone in an anionically coordinated way was synthesized, and this led to well‐defined poly(ε‐caprolactone) macromonomers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2440–2447, 2005  相似文献   

9.
A novel amphiphilic branch‐ring‐branch tadpole‐shaped [linear‐poly(ε‐caprolactone)]‐b‐[cyclic‐poly(ethylene oxide)]‐b‐[linear‐poly(ε‐caprolactone)] [(l‐PCL)‐b‐(c‐PEO)‐b‐(l‐PCL)] was synthesized by combination of glaser coupling reaction with ring‐opening polymerization (ROP) mechanism. The self‐assembling behaviors of (l‐PCL)‐b‐(c‐PEO)‐b‐(l‐PCL) and their π‐shaped analogs of poly(ε‐caprolactone)/poly(ethylene oxide)]‐b‐poly(ethylene oxide)‐b‐[poly(ε‐caprolactone)/poly(ethylene oxide) with comparable molecular weight in water were preliminarily investigated. The results showed that the micelles formed from the former took a fiber look, however, that formed from the latter took a spherical look. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Novel and well‐defined dendrimer‐star, block‐comb polymers were successfully achieved by the combination of living ring‐opening polymerization and atom transfer radical polymerization on the basis of a dendrimer polyester. Star‐shaped dendrimer poly(?‐caprolactone)s were synthesized by the bulk polymerization of ?‐caprolactone with a dendrimer initiator and tin 2‐ethylhexanoate as a catalyst. The molecular weights of the dendrimer poly(?‐caprolactone)s increased linearly with an increase in the monomer. The dendrimer poly(?‐caprolactone)s were converted into macroinitiators via esterification with 2‐bromopropionyl bromide. The star‐block copolymer dendrimer poly(?‐caprolactone)‐block‐poly(2‐hydroxyethyl methacrylate) was obtained by the atom transfer radical polymerization of 2‐hydroxyethyl methacrylate. The molecular weights of these copolymers were adjusted by the variation of the monomer conversion. Then, dendrimer‐star, block‐comb copolymers were prepared with poly(L ‐lactide) blocks grafted from poly(2‐hydroxyethyl methacrylate) blocks by the ring‐opening polymerization of L ‐lactide. The unique and well‐defined structure of these copolymers presented thermal properties that were different from those of linear poly(?‐caprolactone). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6575–6586, 2006  相似文献   

11.
Novel amphiphilic star‐block copolymers, star poly(caprolactone)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] and poly(caprolactone)‐block‐poly(methacrylic acid), with hyperbranched poly(2‐hydroxyethyl methacrylate) (PHEMA–OH) as a core moiety were synthesized and characterized. The star‐block copolymers were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization (ATRP). First, hyperbranched PHEMA–OH with 18 hydroxyl end groups on average was used as an initiator for the ring‐opening polymerization of ε‐caprolactone to produce PHEMA–PCL star homopolymers [PHEMA = poly(2‐hydroxyethyl methacrylate); PCL = poly(caprolactone)]. Next, the hydroxyl end groups of PHEMA–PCL were converted to 2‐bromoesters, and this gave rise to macroinitiator PHEMA–PCL–Br for ATRP. Then, 2‐dimethylaminoethyl methacrylate or tert‐butyl methacrylate was polymerized from the macroinitiators, and this afforded the star‐block copolymers PHEMA–PCL–PDMA [PDMA = poly(2‐dimethylaminoethyl methacrylate)] and PHEMA–PCL–PtBMA [PtBMA = poly(tert‐butyl methacrylate)]. Characterization by gel permeation chromatography and nuclear magnetic resonance confirmed the expected molecular structure. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl methacrylate) blocks gave the star‐block copolymer PHEMA–PCL–PMAA [PMAA = poly(methacrylic acid)]. These amphiphilic star‐block copolymers could self‐assemble into spherical micelles, as characterized by dynamic light scattering and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6534–6544, 2005  相似文献   

12.
A series of di‐ and triblock copolymers [poly(L ‐lactide‐b‐ε‐caprolactone), poly(D,L ‐lactide‐b‐ε‐caprolactone), poly(ε‐caprolactone‐b‐L ‐lactide), and poly(ε‐caprolactone‐b‐L ‐lactide‐b‐ε‐caprolactone)] have been synthesized successfully by sequential ring‐opening polymerization of ε‐caprolactone (ε‐CL) and lactide (LA) either by initiating PCL block growth with living PLA chain end or vice versa using titanium complexes supported by aminodiol ligands as initiators. Poly(trimethylene carbonate‐b‐ε‐caprolactone) was also prepared. A series of random copolymers with different comonomer composition were also synthesized in solution and bulk of ε‐CL and D,L ‐lactide. The chemical composition and microstructure of the copolymers suggest a random distribution with short average sequence length of both the LA and ε‐CL. Transesterification reactions played a key role in the redistribution of monomer sequence and the chain microstructures. Differential scanning calorimetry analysis of the copolymer also evidenced the random structure of the copolymer with a unique Tg. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
We report on the one‐pot synthesis of well‐defined ABC miktoarm star terpolymers consisting of poly(2‐(dimethylamino)ethyl methacrylate), poly(ε‐caprolactone), and polystyrene or poly(ethylene oxide) arms, PS(‐b‐PCL)‐b‐PDMA and PEO (‐b‐PCL)‐b‐PDMA, taking advantage of the compatibility and mutual tolerability of reaction conditions (catalysts and monomers) employed for atom transfer radical polymerization (ATRP), ring‐opening polymerization (ROP), and click reactions. At first, a novel trifunctional core molecule bearing alkynyl, hydroxyl group, and bromine moieties, alkynyl(? OH)? Br, was synthesized via the esterification reaction of 5‐ethyl‐5‐hydroxymethyl‐2,2‐dimethyl‐1,3‐dioxane with 4‐oxo‐4‐(prop‐2‐ynyloxy)butanoic acid, followed by deprotection and monoesterification of alkynyl(? OH)2 with 2‐bromoisobutyryl bromide. In the presence of trifunctional core molecule, alkynyl(? OH)? Br, and CuBr/PMDETA/Sn(Oct)2 catalytic mixtures, target ABC miktoarm star terpolymers, PS(‐b‐PCL)‐b‐PDMA and PEO(‐b‐PCL)‐b‐PDMA, were successfully synthesized in a one‐pot manner by simultaneously conducting the ATRP of 2‐(dimethylamino)ethyl methacrylate (DMA), ROP of ε‐caprolactone (ε‐CL), and the click reaction with azido‐terminated PS (PS‐N3) or azido‐terminated PEO (PEO‐N3). Considering the excellent tolerability of ATRP to a variety of monomers and the fast expansion of click chemistry in the design and synthesis of polymeric and biorelated materials, it is quite anticipated that the one‐pot concept can be applied to the preparation of well‐defined polymeric materials with more complex chain architectures. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3066–3077, 2009  相似文献   

14.
Initiators for continuous activator regeneration atom transfer radical polymerization (ICAR ATRP) of an epoxide‐containing monomer, glycidyl methacrylate (GMA), was successfully carried out using low concentration of catalyst (ca. 105 ppm) at 60 °C in anisole. The copper complex of tris(2‐pyridylmethyl)amine was used as the catalyst, diethyl 2‐bromo‐2‐methylmalonate as the initiator, and 2,2′‐azobisisobutyronitrile as the reducing agent. When moderate degrees of polymerization were targeted (up to 200), special purification of the monomer, other than removal of the polymerization inhibitor, was not required to achieve good control. To synthesize well‐defined polymers with higher degrees of polymerization (600), it was essential to use very pure monomer, and polymers of molecular weights exceeding 50,000 g mol?1 and Mw/Mn = 1.10 were prepared. The developed procedures were used to chain‐extend bromine‐terminated poly(methyl methacrylate) macroinitiator prepared by activators regenerated by electron transfer (ARGET) ATRP. The SnII‐mediated ARGET ATRP technique was not suitable for the polymerization of GMA and resulted in polymers with multimodal molecular weight distributions. This was due to the occurrence of epoxide ring‐opening reactions, catalyzed by SnII and SnIV. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Biomimetic star‐shaped poly(ε‐caprolactone)‐b‐poly(gluconamidoethyl methacrylate) block copolymers (SPCL‐PGAMA) were synthesized from the atom transfer radical polymerization (ATRP) of unprotected GAMA glycomonomer using a tetra(2‐bromo‐2‐methylpropionyl)‐terminated star‐shaped poly(ε‐caprolactone) (SPCL‐Br) as a macroinitiator in NMP solution at room temperature. The block length of PGAMA glycopolymer within as‐synthesized SPCL‐PGAMA copolymers could be adjusted linearly by controlling the molar ratio of GAMA glycomonomer to SPCL‐Br macroinitiator, and the molecular weight distribution was reasonably narrow. The degree of crystallization of PCL block within copolymers decreased with the increasing block length ratio of outer PGAMA to inner PCL. Moreover, the self‐assembly properties of the SPCL‐PGAMA copolymers were investigated by NMR, UV‐vis, DLS, and TEM, respectively. The self‐assembled glucose‐installed aggregates changed from spherical micelles to worm‐like aggregates, then to vesicles with the decreasing weight fraction of hydrophilic PGAMA block. Furthermore, the biomolecular binding of SPCL‐PGAMA with Concanavalin A (Con A) was studied by means of UV‐vis, fluorescence spectroscopy, and DLS, which demonstrated that these SPCL‐PGAMA copolymers had specific recognition with Con A. Consequently, this will not only provide biomimetic star‐shaped SPCL‐PGAMA block copolymers for targeted drug delivery, but also improve the compatibility and drug release properties of PCL‐based biomaterials for hydrophilic peptide drugs. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 817–829, 2008  相似文献   

16.
Well‐defined glycidyl methacrylate (GMA) based di‐ and triblock copolymers, with self‐activation and self‐initiation behaviors by incorporation of 2‐(diethylamino) ethyl methacrylate (DEA) blocks, were synthesized via ambient temperature atom transfer radical polymerization (ATRP). The stability of the GMA pendant oxirane rings in tertiary amine environments at ambient temperature was investigated. More importantly, both self‐activation behavior in oxirane ring opening addition reaction and self‐initiation behavior in post‐cure oxirane ring opening crosslinking of these block copolymers were evidenced by 1H NMR studies. The results demonstrated that the reactivity of pendent oxirane rings was strongly dependant on the nucleophilicity and steric hindrance of tertiary amine moieties and temperature. This facilitated the synthesis of well‐defined block copolymers of GMA and DEA via sequential monomer addition ATRP, particularly for polymerization of GMA monomer at ambient temperature. Moreover, these one‐component GMA based block polymers have novel self‐activation and self‐initiation properties, rendering some potential applications in both enzyme immobilization and GMA‐based thermosetting materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2947–2958, 2007  相似文献   

17.
Amphiphilic A3B mikto‐arm copolymers have been synthesized using a t‐butyl‐diphenyl silyl‐based methylglucoside derivative. The latter has been first used as initiator for the polymerization of ε‐caprolactone leading to three‐arm star‐shaped structures followed by several postpolymerization steps to obtain star‐shaped poly(ε‐caprolactone) macroinitiator. Atom transfer radical polymerization (ATRP) of diisopropylidene galactose methacrylate in THF at 60 °C using CuBr ligated with 1,1,4,7,10,10‐hexamethyltriethylenetetramine (HMTETA) as catalytic complex allowed the formation of A3B mikto‐arm copolymers with different compositions and molecular weights. Selective deprotection of sugar protecting groups finally generated amphiphilic mikto‐arm copolymers. The molecular characterization of those copolymers was performed by 1H NMR spectroscopy and gel permeation chromatography (GPC) analysis. The self‐assembly of the copolymers into micellar aggregates and the related critical micellization concentration (CMC) in aqueous media were determined by dynamic light scattering (DLS) and UV‐visible spectroscopy, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3271–3280, 2010  相似文献   

18.
Novel amphiphilic eight‐arm star triblock copolymers, star poly(ε‐caprolactone)‐block‐poly(acrylic acid)‐block‐poly(ε‐caprolactone)s (SPCL‐PAA‐PCL) with resorcinarene as core moiety were prepared by combination of ROP, ATRP, and “click” reaction strategy. First, the hydroxyl end groups of the predefined eight‐arm SPCLs synthesized by ROP were converted to 2‐bromoesters which permitted ATRP of tert‐butyl acrylate (tBA) to form star diblock copolymers: SPCL‐PtBA. Next, the bromide end groups of SPCL‐PtBA were quantitatively converted to terminal azides by NaN3, which were combined with presynthesized alkyne‐terminated poly(ε‐caprolactone) (A‐PCL) in the presence of Cu(I)/N,N,N,N,N″‐pentamethyldiethylenetriamine in DMF to give the star triblock copolymers: SPCL‐PtBA‐PCL. 1H NMR, FTIR, and SEC analyses confirmed the expected star triblock architecture. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl acrylate) blocks gave the amphiphilic star triblock copolymers: SPCL‐PAA‐PCL. These amphiphilic star triblock copolymers could self‐assemble into spherical micelles in aqueous solution with the particle size ranging from 20 to 60 nm. Their micellization behaviors were characterized by dynamic light scattering and transmission electron microscopy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2905–2916, 2009  相似文献   

19.
We have synthesized poly(ε‐caprolactone‐co‐tert‐butyl glycidyl ether) (CL‐co‐BGE) statistical copolymers using 1‐tert‐butyl‐4,4,4‐tris(dimethylamino)‐2,2‐bis [tris(dimethylamino)phophoranylidenamino]‐2Λ5,4Λ5‐catenadi(phosphazene) (t‐BuP4) as the catalyst. The hydrolysis of the resulting polymers yields amphiphilic poly(ε‐caprolactone‐co‐glycidol) (CL‐co‐GD) copolymers. By use of the quartz crystal microbalance with dissipation (QCM‐D), we have investigated the enzymatic degradation of the copolymers. It is shown that the degradation rate increases with the content of hydrophilic (GD) units. (3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide) (MTT) assay experiments demonstrate that the CL‐co‐GD copolymers have low cytotoxicity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 846–853  相似文献   

20.
A well‐defined comblike copolymer of poly(ethylene oxide‐co‐glycidol) [(poly(EO‐co‐Gly)] as the main chain and poly(ε‐caprolactone) (PCL) as the side chain was successfully prepared by the combination of anionic polymerization and ring‐opening polymerization. The glycidol was protected by ethyl vinyl ether to form 2,3‐epoxypropyl‐1‐ethoxyethyl ether (EPEE) first, and then ethylene oxide was copolymerized with EPEE by an anionic mechanism. The EPEE segments of the copolymer were deprotected by formic acid, and the glycidol segments of the copolymers were recovered after saponification. Poly(EO‐co‐Gly) with multihydroxyls was used further to initiate the ring‐opening polymerization of ε‐caprolactone in the presence of stannous octoate. When the grafted copolymer was mixed with α‐cyclodextrin, crystalline inclusion complexes (ICs) were formed, and the intermediate and final products, poly(ethylene oxide‐co‐glycidol)‐graft‐poly(ε‐caprolactone) and ICs, were characterized with gel permeation chromatography, NMR, differential scanning calorimetry, X‐ray diffraction, and thermogravimetric analysis in detail. The obtained ICs had a channel‐type crystalline structure, and the ratio of ε‐caprolactone units to α‐cyclodextrin for the ICs was higher than 1:1. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3684–3691, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号