首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A computational method for estimation of the gas‐phase enthalpies of formation of aromatic hydrocarbons and ethers has been developed. The method is based on high‐level G3(MP2)//B3LYP calculations, atomization reactions, and structure‐dependent correction terms. By this method, enthalpies of formation ΔfHm°(g, 298.15 K) of 86 aromatic compounds were evaluated. The calculated enthalpies of formation raise questions of the reliability of several experimental enthalpies of formation reported in the literature. As an application of the computational enthalpies of formation, reaction enthalpies for several types of isomerization reactions of aromatic compounds were calculated. In cases in which experimental reaction enthalpies were available for comparison, the agreement between the computational and experimental data proved to be excellent. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The gas‐phase enthalpies of formation at 298.15 K of a number of acyclic and cyclic olefinic ethers (mainly α,β‐unsaturated ethers), together with those of a few cyclic mono‐ and dienes, have been estimated by G3(MP2)//B3LYP calculations. In most cases, the computational and experimental data (if available) are in good mutual agreement. Whenever significant deviations between the experimental and computational data were found, the experimental enthalpies of formation arise from a single data source, and it appears that small experimental errors are embedded therein. A marked error was found in the experimental enthalpy of formation of 2‐chloroethyl ethyl ether, used in this work as a reagent for estimation of the enthalpy of formation of 2‐chloroethyl vinyl ether by an isodesmic reaction. Moreover, significant errors were also found in the literature values for the computational (B3LYP/6‐311G**) enthalpies of formation of several Me‐substituted derivatives of methyl vinyl ether. The present computational method, besides providing acceptable enthalpies of formation for unsaturated ethers, was also found to give accurate ΔfH(g) values for cyclic mono‐ and dienes. Thus, the G3(MP2)//B3LYP computational method proved to be a valuable tool for investigating the energetics of olefinic ethers and hydrocarbons. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
A computational study of the stable conformations and gas‐phase enthalpies of formation at 25 °C of the title compounds has been carried out by G3(MP2)//B3LYP calculations. The work stems from our early observations on the thermodynamic and NMR spectroscopic properties of 2‐methylenetetrahydropyran and related compounds suggesting a dominating chair conformation, with poor p–π overlap in the ? O? C?C moiety, for these compounds. Besides computational verification of the chair conformation of 2‐methylenetetrahydropyran, the work was extended to find out the stable conformations of a number of other related compounds and to evaluate the relative stabilities of the various conformers. Another important goal of the work was the estimation of the gas‐phase enthalpies of formation of the present compounds, for which such literature data are scarce. A significant error in the literature value of the enthalpy of formation of methylenecyclohexane was found. Finally, the relative enthalpy levels of the isomeric compounds of this work are discussed. The high thermodynamic stability of the compounds containing an ester functional group, ? O? C?O, relative to the stability of isomeric compounds with an ? O? C?C moiety in place of the ester function, is demonstrated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The enthalpies of formation of a number of acyclic, straight‐chain ethers and diethers were determined by G3(MP2)//B3 calculations. The principal aim of the work was to study the magnitude of the O…O proximity effect on the enthalpy contents of diethers as a function of the distance (number of bonds) between the O atoms. 1,4‐Diethers and 1,5‐diethers were computed to be destabilized by ca. 4.5 (±0.5) and 3.2 (±0.4) kJ mol?1, respectively, by the O…O proximity effect. The effect was calculated to be negligible in diethers with the O atoms in positions more remote than 1,5 from each other, whereas 1,3‐diethers (acetals) are stabilized by ca. 22 kJ mol?1, likely on account of the anomeric effect. Calculations on simple monoethers show that the contributions to of CH2 groups in the β and γ positions (relative to O) are reduced by ca. 0.8 and 0.3 kJ mol?1, respectively, relative to those of CH2 groups more remote from the O atom. The computational enthalpies of formation of the studied monoethers and diethers, both cyclic and acyclic, are generally in good agreement with experimental data, another important result of the present work. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
The gas‐phase elimination kinetics of the title compounds were carried out in a static reaction system and seasoned with allyl bromide. The working temperature and pressure ranges were 200–280 °C and 22–201.5 Torr, respectively. The reactions are homogeneous, unimolecular, and follow a first‐order rate law. These substrates produce isobutene and corresponding carbamic acid in the rate‐determining step. The unstable carbamic acid intermediate rapidly decarboxylates through a four‐membered cyclic transition state (TS) to give the corresponding organic nitrogen compound. The temperature dependence of the rate coefficients is expressed by the following Arrhenius equations: for tert‐butyl carbamate logk1 (s?1) = (13.02 ± 0.46) – (161.6 ± 4.7) kJ/mol(2.303 RT)?1, for tert‐butyl N‐hydroxycarbamate logk1 (s?1) = (12.52 ± 0.11) – (147.8 ± 1.1) kJ/mol(2.303 RT)?1, and for 1‐(tert‐butoxycarbonyl)‐imidazole logk1 (s?1) = (11.63 ± 0.21)–(134.9 ± 2.0) kJ/mol(2.303 RT)?1. Theoretical studies of these elimination were performed at Møller–Plesset MP2/6‐31G and DFT B3LYP/6‐31G(d), B3LYP/6‐31G(d,p) levels of theory. The calculated bond orders, NBO charges, and synchronicity (Sy) indicate that these reactions are concerted, slightly asynchronous, and proceed through a six‐membered cyclic TS type. Results for estimated kinetic and thermodynamic parameters are discussed in terms of the proposed reaction mechanism and TS structure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
4-acetylanilinium was used as a ligand for the synthesis of the organic/inorganic compound bis (4-acetylanilinium) hexachlorostannate. Vibrational study in the solid state was performed by FT-Raman of the free 4-acetylanilinium ligand C8H9ON+ and by FT-IR and FT-Raman spectroscopies of the [C8H10NO]2 SnCl6 compound. The comparative analysis of the Raman spectra of the title compound with that of the free ligand was discussed. The structure of the [C8H10NO]2SnCl6 was optimized by density functional theory (DFT) using B3LYP method and shows that the calculated values obtained by B3LYP/LanL2DZ basis are in a better agreement with the experimental data reported by Song et al. (2011) [1] than those obtained by B3LYP/LanL2MB basis. The vibrational frequencies are calculated using density functional theory (DFT) with the B3LYP/LanL2DZ basis, and scaled by various factors. Root mean square (RMS) value was calculated and the small difference between experimental and calculated modes has been interpreted by intermolecular interactions in the crystal.  相似文献   

7.
In this paper, we report an example of intermolecular solid‐state proton transfer in the bicyclic guanidine, hppH. A combination of X‐ray crystallography, CPMAS NMR (13C and 15N) and theoretical calculations allows us to determine that a double proton transfer takes place in the (hppH)2 dimer with an activation energy of about 50 kJ mol?1. According to the B3LYP/6‐311++G(d,p) calculations, the double proton transfer occurs non‐symmetrically through a zwitterion. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Geometry optimisation and metal ion affinities (MIAs) of the binding configurations of Be2+, Mg2+ and Ca2+ to L ‐proline were calculated using the hybrid Density Functional Theory (DFT‐B3LYP) and second order Møllet?Plesset perturbation theory (MP2) methods. Be2+ was found to bind preferentially in a charge transfer type arrangement through the carbonyl oxygen (? C?O) and the lone pair of the imino‐group nitrogen atom (? NH? ). On the contrary Mg2+ and Ca2+ were found to prefer binding in a bi‐dentate manner through the carboxylate group of L ‐proline (OCO) in a zwitterion form. The main types of interactions found to influence the binding preference of M2+ ions to L ‐proline were (i) charge transfer in the case of Be2+ ions and (ii) electrostatic interactions in the case of Mg2+ and Ca2+ ions. Inspection of the IR stretching of the N? H and the O? H groups of L ‐proline with M2+ ions in a chelating configuration (to both O and N atoms) indicated a considerable shift to higher frequency with decreasing MIA. On the other hand, the MIA for the zwitterion L ‐proline with M2+ tracks the reciprocal distance of the M2+? OCO bond further confirming that the nature of the bond is mainly electrostatic. Comparison with other molecules containing the carboxylic function is also included in order to gain more insight on the types of interaction of this amino acid with metal ions in general. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The standard molar enthalpy of formation in the gas phase of 2H-1,4-benzoxazin-3(4H)-one was derived from the standard energy of combustion determined by static bomb combustion calorimetry in oxygen atmosphere and from the standard sublimation enthalpy determined by Calvet microcalorimetry. In addition, we report the results of a systematic theoretical study of the keto and enol tautomers in benzoxazinones and diones using density functional theory. The keto tautomers are computed to be more stable than the enols. Tautomerization energies are reported.  相似文献   

10.
龙耀文  张红  程新路 《中国物理 B》2022,31(2):27102-027102
The lead-free perovskites Cs3B2X9(B=Sb,Bi;X=Cl,Br,I)as the popular photoelectric materials have excellent optical properties with lower toxicity.In this study,we systematically investigate the stable monolayer Cs3B2X9and bilayer vertical heterostructure Cs3B2X9/Cs3B02X9(B,B0=Sb,Bi;X=Cl,Br,I)via first-principles simulations.By exploring the electrical structures and band edge positions,we find the band gap reduction and the band type transition in the heterostructure Cs3B2X9/Cs3B02X9 due to the charge transfer between layers.Furthermore,the results of optical properties reveal light absorption from the visible light to UV region,especially monolayer Cs3Sb2I9 and heterostructure Cs3Sb2I9/Cs3Bi2I9,which have absorption peaks in the visible light region,leading to the possibility of photocatalytic water splitting.These results provide insights for more two-dimensional semiconductors applied in the optoelectronic and photocatalytic fields.  相似文献   

11.
12.
Potassium isopropyl xanthate, (CH3)2CHOC(S)SK, reacts with methyl chloroformiate ClC(O)OCH3 to yield (methoxycarbonyl) (2‐propoxythiocarbonyl) sulfide, (CH3)2CHOC(S)SC(O)OCH3. This novel xanthogen formate was characterized by 1H and 13C{1H} NMR spectroscopy, mass spectrometry and IR and Raman spectroscopy. The structure of a single crystal of (CH3)2CHOC(S)SC(O)OCH3 was determined by X‐ray diffraction analysis at 173 K. The conformational properties have been studied by liquid IR and Raman spectroscopy, matrix isolation spectroscopy together with photochemical studies and quantum chemical calculations (HF and B3LYP methods with the 6‐31+G* basis set). The analysis of the IR spectrum of liquid (CH3)2CHOC(S)SC(O)OCH3 suggests the presence of two conformers in equilibrium at room temperature. However, in the photochemical matrix study, an equilibrium of three conformers was detected. These forms were further characterized by theoretical calculations. Different photolysis products, such as CH3OC(O)SCH(CH3)2, OCS, CO, CO2 and CS2, were identified by matrix spectroscopy. The IR absorptions of CH3OC(O)SCH(CH3)2, for which literature data are scarce, were analysed in the light of the results of appropriate theoretical calculations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A theoretical study of the hemiacetal formation reaction between methanol and CX3CHO (X = H, F, Cl, Br, and I) has been carried out using density functional theory and Becke, three‐parameter, Lee–Yang–Parr/6‐311++G(d,p) computational methods. The stationary points of the reaction between the isolated molecules and the reaction catalyzed by an additional methanol molecule have been characterized. Because the final products present a stereogenic center, the potential autocatalysis of the reaction has been examined and also the possibility of spontaneous generation of chirality when the hemiacetal molecules are involved in the transition state structure. High barriers are found in the reaction between the isolated molecules that are reduced by the assistance of an additional molecule (methanol or hemiacetal product). The reactions catalyzed by the hemiacetal products show higher barriers than the one catalyzed by methanol. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
15.
A concentration‐dependent Raman study of the ν(C Br) stretching and trigonal bending modes of 2‐ and 3‐Br‐pyridine (2Br‐p and 3Br‐p) in CH3OH was performed at different mole fractions of the reference molecule, 2Br‐p/3Br‐p, from 0.1 to 0.9 in order to understand the origin of blue/red wavenumber shifts of the vibrational modes due to hydrogen‐bond formation. The appearance of additional Raman bands in these binary systems at ∼617 cm−1in the case of 2Br‐p and at ∼618 cm−1 in the case of 3Br‐p compared to neat bromopyridine derivatives were attributed to specific hydrogen‐bonded complexes formed in the mixtures. The interpretation of experimental results is supported by density functional calculations on optimized geometries and vibrational wavenumbers of 2Br‐p and 3Br‐p and a series of hydrogen‐bonded complexes with methanol. The parameters obtained from these calculations were used for a qualitative explanation of the blue/red shifts. The wavenumber shifts and linewidth changes for the ν(C Br) stretching and trigonal bending modes as a function of concentration reveal that the caging effects leading to motional narrowing and diffusion‐causing line broadening are simultaneously operative, in addition to the blue shift caused due to hydrogen bonding. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Ab initio molecular orbital calculations using MP2 and DFT/B3LYP methods at the 6-311++G(d,p) and aug-cc-pvdz basis sets were applied to characterise the kinetics of the thermal dissociation of HC≡CCH2NHX [where X = OH(I), F(II) and Cl(III)] to produce Z- and E-prop-2-ynylideneamines (HC≡CCH=NH) (IV and V, respectively), which tautomerise to vinyl cyanide (CH2=CHC≡N) (VI). The optimised geometries and electronic energies of reactants, transition states and products were estimated and discussed. A concerted proton migration and HX abstraction mechanism was proposed for the imine formation. The reliance of these properties on the elected levels of theory was discussed. The activation energies and barrier heights for the Z- and E-forms and their vinyl cyanide tautomers were estimated and analysed. The Z-form was computed to be more stable than the E-form. Using natural bond orbital calculations, the origin of the preference of the Z-form was attributed mainly to the N lone pair delocalisations. Vinyl cyanide was located to have a lower energy (33–35 kcal/mol) than prop-2-ynylideneamine. The provenance of the preference of the former and its tautomerisation mechanism will be addressed in a separate publication.  相似文献   

17.
The mechanism and regioselectivities and stereoselectivities of the [3 + 2] cycloaddition (32CA) reaction of 3‐(benzylideneamino) oxindole (AY) and trans‐β‐nitrostyrene have been studied using both B3LYP and ωB97XD density functional theory methods together with the standard 6‐31G(d) basis set. Four reactive pathways associated with the ortho and meta regioselective channels and endo and exo stereoselective approaches modes have been explored and characterized. While the B3LYP functional fails to predict the experimental regioselectivity, the ωB97XD one succeeds to predict the experimentally observed meta regioselectivity favoring the formation of meta/endo cycloadduct as the major isomer. Inclusion of solvent effects increases the regioselectivity and decreases the experimentally observed stereoselectivity. Analysis of the density functional theory global reactivity indices and the Parr functions of the reagents in its ground state allows explaining the reactivity and the meta regioselectivity of this zwitterionic‐type 32CA reaction, which account for the high polar character of this reaction. Non‐covalent interaction analysis of the most favorable meta/endo transition state structure reveals that the formation of a hydrogen‐bond between 1 nitro oxygen and the AY N–H hydrogen is responsible for the selectivity experimentally found in this polar zwitterionic‐type 32CA reaction.  相似文献   

18.
对CCI4/Ar混合气体脉冲直流高压放电产生CCI2自由基,经过约110μs后,再用541.52nm激光将电子基态CCI2激励到激发态A^1B1(0,4,0)振动态K=0级以上,通过检测激发态CCI2(A)时间分辨荧光信号,测得室温下CCI2(A^1B1和a^3B1)被酮类分子猝灭的实验结果,用所提出的三能级模型分析处理实验数据,获得态分辨速率常数KA和Kα值。  相似文献   

19.
Fourier transform (FT)‐Raman and Fourier transform infrared (FT‐IR) spectra of 3‐{[(4‐fluorophenyl)methylene]amino}‐2‐phenylquinazolin‐4(3H)‐one were recorded and analyzed. The vibrational wavenumbers of the title compound were computed using the B3LYP/6‐31G* basis and compared with the experimental data. The prepared compound was identified by NMR and mass spectra. The simultaneous IR and Raman activation of the CO stretching mode shows a charge transfer interaction through a π‐conjugated path. The first hyperpolarizability and infrared intensities are reported. The assignments of the normal modes are done by potential energy distribution (PED) calculations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
ABSTRACT

Optimized geometrical structure and harmonic vibration frequencies of prior synthesized (E)-3-phenyl-N-[4-(phenyl-amino) quinazoline-7-yl] acrylamide were computed by ab initio HF and DFT/B3LYP methods using both 6-31G* and 6-311G** basis sets and the Moller–Plesset second-order perturbation (MP2) method merely at the 6-31G* level. The infrared (IR) spectrum of the title compound has been measured in the range of 400–4000 cm?1. Complete vibrational assignments of the IR spectra were proposed. Moreover, the calculated wavenumbers of the title compound were compared with the experimental data. The correlation analyses indicate that good linearity relationships exist between the scaled theoretical vibration frequencies and the experimental values. Additionally, the atoms in molecules (AIM) method was applied to explore the possible intramolecular interactions in the title compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号