首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Higher order finite element discretizations, although providing higher accuracy, are considered to be computationally expensive and of limited use for large‐scale problems. In this paper, we have developed an efficient iterative solver for solving large‐scale quadratic finite element problems. The proposed approach shares some common features with geometric multigrid methods but does not need structured grids to create the coarse problem. This leads to a robust method applicable to finite element problems discretized by unstructured meshes such as those from adaptive remeshing strategies. The method is based on specific properties of hierarchical quadratic bases. It can be combined with an algebraic multigrid (AMG) preconditioner or with other algebraic multilevel block factorizations. The algorithm can be accelerated by flexible Krylov subspace methods. We present some numerical results on the convection–diffusion and linear elasticity problems to illustrate the efficiency and the robustness of the presented algorithm. In these experiments, the performance of the proposed method is compared with that of an AMG preconditioner and other iterative solvers. Our approach requires less computing time and less memory storage. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The quality of the mesh used in the finite element discretizations will affect the efficiency of solving the discreted linear systems. The usual algebraic solvers except multigrid method do not consider the effect of the grid geometry and the mesh quality on their convergence rates. In this paper, we consider the hierarchical quadratic discretizations of three‐dimensional linear elasticity problems on some anisotropic hexahedral meshes and present a new two‐level method, which is weakly independent of the size of the resulting problems by using a special local block Gauss–Seidel smoother, that is LBGS_v iteration when used for vertex nodes or LBGS_m iteration for midside nodes. Moreover, we obtain the efficient algebraic multigrid (AMG) methods by applying DAMG (AMG based on distance matrix) or DAMG‐PCG (PCG with DAMG as a preconditioner) to the solution of the coarse level equation. The resulting AMG methods are then applied to a practical example as a long beam. The numerical results verify the efficiency and robustness of the proposed AMG algorithms. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Based on the geometric grid information as geometric coordinates, an algebraic multigrid (AMG) method with the interpolation reproducing the rigid body modes (namely the kernel elements of semi-definite operator arising from linear elasticity) is constructed, and such method is applied to the linear elasticity problems with a traction free boundary condition and crystal problems with free boundary conditions as well. The results of various numerical experiments in two dimensions are presented. It is shown from the numerical results that the constructed AMG method is robust and efficient for such semi-definite problems, and the convergence is uniformly bounded away from one independent of the problem size. Furthermore, the AMG method proposed in this paper has better convergence rate than the commonly used AMG methods. Simultaneously, an AMG method that can preserve the quotient space, which means that if the exact solution of original problem belongs to the quotient space of discrete operator considered, then the numerical solution of AMG method is convergent in the same quotient space, is obtained using the technique of orthogonal decomposition.  相似文献   

4.
Based on the auxiliary space method, a preconditioner is studied in this paper for linear systems of equations arising from higher order finite element (FEM) discretizations of linear elasticity equations. The main idea, which is proposed by Xu (Computing 1996; 56 :215–235) for the scalar PDE, is to construct the preconditioner as a combination of a smoother and a coarse level solver, where the systems of equations arising from lower order FEM discretizations are used in the coarse level solver. It is theoretically shown that the condition number of the preconditioned systems is uniformly bounded with respect to both the problem size and moderate Poisson's ratio. When the Poisson's ratio is near the limit of 0.5, we have presented some numerical tests for the case of fourth‐order FEM discretization in a combination with quadratic conforming FEM as a coarse space. The results are almost robust when Poisson's ratio is near the limit of 0.5. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
In this article, we propose a two‐level finite element method to analyze the approximate solutions of the stationary Navier‐Stokes equations based on a stabilized local projection. The local projection allows to circumvent the Babuska‐Brezzi condition by using equal‐order finite element pairs. The local projection can be used to stabilize high equal‐order finite element pairs. The proposed method combines the local projection stabilization method and the two‐level method under the assumption of the uniqueness condition. The two‐level method consists of solving a nonlinear equation on the coarse mesh and solving a linear equation on fine mesh. The nonlinear equation is solved by the one‐step Newtonian iteration method. In the rest of this article, we show the error analysis of the lowest equal‐order finite element pair and provide convergence rate of approximate solutions. Furthermore, the numerical illustrations coincide with the theoretical analysis expectations. From the view of computational time, the results show that the two‐level method is effective to solve the stationary Navier‐Stokes equations. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

6.
Mesh generation and algebraic solver are two important aspects of the finite element methodology. In this article, we are concerned with the joint adaptation of the anisotropic triangular mesh and the iterative algebraic solver. Using generic numerical examples pertaining to the accurate and efficient finite element solution of some anisotropic problems, we hereby demonstrate that the processes of geometric mesh adaptation and the algebraic solver construction should be adapted simultaneously. We also propose some techniques applicable to the co‐adaptation of both anisotropic meshes and linear solvers. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

7.
In this article, we consider the finite element method (FEM) for two‐dimensional linear time‐fractional Tricomi‐type equations, which is obtained from the standard two‐dimensional linear Tricomi‐type equation by replacing the first‐order time derivative with a fractional derivative (of order α, with 1 <α< 2 ). The method is based on finite element method for space and finite difference method for time. We prove that the method is unconditionally stable, and the error estimate is presented. The comparison of the FEM results with the exact solutions is made, and numerical experiments reveal that the FEM is very effective. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

8.
In this article, we analyze a quadratic equal‐order stabilized finite element approximation for the incompressible Stokes equations based on two local Gauss integrations. Our method only offsets the discrete pressure gradient space by the residual of the simple and symmetry term at element level to circumvent the inf‐sup condition. And this method does not require specification of a stabilization parameter, and always leads to a symmetric linear system. Furthermore, this method is unconditionally stable, and can be implemented at the element level with minimal additional cost. Finally, we give some numerical simulations to show good stability and accuracy properties of the method. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

9.
Previous works on the convergence of numerical methods for the Boussinesq problem were conducted, while the optimal L2‐norm error estimates for the velocity and temperature are still lacked. In this paper, the backward Euler scheme is used to discrete the time terms, standard Galerkin finite element method is adopted to approximate the variables. The MINI element is used to approximate the velocity and pressure, the temperature field is simulated by the linear polynomial. Under some restriction on the time step, we firstly present the optimal L2 error estimates of approximate solutions. Secondly, two‐level method based on Stokes iteration for the Boussinesq problem is developed and the corresponding convergence results are presented. By this method, the original problem is decoupled into two small linear subproblems. Compared with the standard Galerkin method, the two‐level method not only keeps good accuracy but also saves a lot of computational cost. Finally, some numerical examples are provided to support the established theoretical analysis.  相似文献   

10.
The object of this paper is to present the numerical solution of the time‐space fractional telegraph equation. The proposed method is based on the finite difference scheme in temporal direction and Fourier spectral method in spatial direction. The fast Fourier transform (FFT) technique is applied to practical computation. The stability and convergence analysis are strictly proven, which shows that this method is stable and convergent with (2?α) order accuracy in time and spectral accuracy in space. Moreover, the Levenberg‐Marquardt (L‐M) iterative method is employed for the parameter estimation. Finally, some numerical examples are given to confirm the theoretical analysis.  相似文献   

11.
Algebraic multigrid (AMG) is a powerful linear solver with attractive parallel properties. A parallel AMG method depends on efficient, parallel implementations of the coarse‐grid selection algorithms and the restriction and prolongation operator construction algorithms. In the effort to effectively and quickly select the coarse grid, a number of parallel coarsening algorithms have been developed. This paper examines the behaviour of these algorithms in depth by studying the results of several numerical experiments. In addition, new parallel coarse‐grid selection algorithms are introduced and tested. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Coarsening is a crucial component of algebraic multigrid (AMG) methods for iteratively solving sparse linear systems arising from scientific and engineering applications. Its application largely determines the complexity of the AMG iteration operator. Usually, high operator complexities lead to fast convergence of the AMG method; however, they require additional memory and as such do not scale as well in parallel computation. In contrast, although low operator complexities improve parallel scalability, they often lead to deterioration in convergence. This study introduces a new type of coarsening strategy called algebraic interface‐based coarsening that yields a better balance between convergence and complexity for a class of multi‐scale sparse matrices. Numerical results for various model‐type problems and a radiation hydrodynamics practical application are provided to show the effectiveness of the proposed AMG solver.  相似文献   

13.
Based on two‐grid discretizations, a two‐parameter stabilized finite element method for the steady incompressible Navier–Stokes equations at high Reynolds numbers is presented and studied. In this method, a stabilized Navier–Stokes problem is first solved on a coarse grid, and then a correction is calculated on a fine grid by solving a stabilized linear problem. The stabilization term for the nonlinear Navier–Stokes equations on the coarse grid is based on an elliptic projection, which projects higher‐order finite element interpolants of the velocity into a lower‐order finite element interpolation space. For the linear problem on the fine grid, either the same stabilization approach (with a different stabilization parameter) as that for the coarse grid problem or a completely different stabilization approach could be employed. Error bounds for the discrete solutions are estimated. Algorithmic parameter scalings of the method are also derived. The theoretical results show that, with suitable scalings of the algorithmic parameters, this method can yield an optimal convergence rate. Numerical results are provided to verify the theoretical predictions and demonstrate the effectiveness of the proposed method. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 425–444, 2017  相似文献   

14.
In this article, we propose and analyze a new decoupled characteristic stabilized finite element method for the time‐dependent Navier–Stokes/Darcy model. The key idea lies in combining the characteristic method with the stabilized finite element method to solve the decoupled model by using the lowest‐order conforming finite element space. In this method, the original model is divided into two parts: one is the nonstationary Navier–Stokes equation, and the other one is the Darcy equation. To deal with the difficulty caused by the trilinear term with nonzero boundary condition, we use the characteristic method. Furthermore, as the lowest‐order finite element pair do not satisfy LBB (Ladyzhen‐Skaya‐Brezzi‐Babuska) condition, we adopt the stabilized technique to overcome this flaw. The stability of the numerical method is first proved, and the optimal error estimates are established. Finally, extensive numerical results are provided to justify the theoretical analysis.  相似文献   

15.
In this paper, we consider the Crank‐Nicolson extrapolation scheme for the 2D/3D unsteady natural convection problem. Our numerical scheme includes the implicit Crank‐Nicolson scheme for linear terms and the recursive linear method for nonlinear terms. Standard Galerkin finite element method is used to approximate the spatial discretization. Stability and optimal error estimates are provided for the numerical solutions. Furthermore, a fully discrete two‐grid Crank‐Nicolson extrapolation scheme is developed, the corresponding stability and convergence results are derived for the approximate solutions. Comparison from aspects of the theoretical results and computational efficiency, the two‐grid Crank‐Nicolson extrapolation scheme has the same order as the one grid method for velocity and temperature in H1‐norm and for pressure in L2‐norm. However, the two‐grid scheme involves much less work than one grid method. Finally, some numerical examples are provided to verify the established theoretical results and illustrate the performances of the developed numerical schemes.  相似文献   

16.
In this paper, we will investigate a two grid finite element discretization method for the semi‐linear hyperbolic integro‐differential equations by piecewise continuous finite element method. In order to deal with the semi‐linearity of the model, we use the two grid technique and derive that once the coarse and fine mesh sizes H, h satisfy the relation h = H2 for the two‐step two grid discretization method, the two grid method achieves the same convergence accuracy as the ordinary finite element method. Both theoretical analysis and numerical experiments are given to verify the results.  相似文献   

17.
We consider an algebraic multilevel preconditioning technique for SPD matrices arising from finite element discretization of elliptic PDEs. In particular, we address the case of non‐M matrices. The method is based on element agglomeration and assumes access to the individual element matrices. The left upper block of the considered multiplicative two‐level preconditioner is approximated using incomplete factorization techniques. The coarse‐grid element matrices are simply Schur complements computed from local neighbourhood matrices, i.e. small collections of element matrices. Assembling these local Schur complements results in a global Schur complement approximation that can be analysed by regarding (local) macro elements. These components, when combined in the framework of an algebraic multilevel iteration, yield a robust and efficient linear solver. The presented numerical experiments include also the Lamé differential equation for the displacements in the two‐dimensional plane‐stress elasticity problem. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
We consider the time‐dependent magnetic induction model as a step towards the resistive magnetohydrodynamics model in incompressible media. Conforming nodal‐based finite element approximations of the induction model with inf‐sup stable finite elements for the magnetic field and the magnetic pseudo‐pressure are investigated. Based on a residual‐based stabilization technique proposed by Badia and Codina, SIAM J. Numer. Anal. 50 (2012), pp. 398–417, we consider a stabilized nodal‐based finite element method for the numerical solution. Error estimates are given for the semi‐discrete model in space. Finally, we present some examples, for example, for the magnetic flux expulsion problem, Shercliff's test case and singular solutions of the Maxwell problem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
With the ubiquity of large‐scale computing resources has come significant attention to practical details of fast algorithms for the numerical solution of partial differential equations. Included in this group are the class of multigrid and algebraic multigrid algorithms that are effective solvers for many of the large matrix problems arising from the discretization of elliptic operators. Algebraic multigrid (AMG) is especially effective for many problems with discontinuous coefficients, discretized on unstructured grids, or over complex geometries. While much effort has been invested in improving the practical performance of AMG, little theoretical understanding of this performance has emerged. This paper presents a two‐level convergence theory for a reduction‐based variant of AMG, called AMGr, which is particularly appropriate for linear systems that have M‐matrix‐like properties. For situations where less is known about the problem matrix, an adaptive version of AMGr that automatically determines the form of the reduction needed by the AMGr process is proposed. The adaptive cycle is shown, in both theory and practice, to yield an effective AMGr algorithm. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
In this work we construct and analyze some finite difference schemes used to solve a class of time‐dependent one‐dimensional convection‐diffusion problems, which present only regular layers in their solution. We use the implicit Euler or the Crank‐Nicolson method to discretize the time variable and a HODIE finite difference scheme, defined on a piecewise uniform Shishkin mesh, to discretize the spatial variable. In both cases we prove that the numerical method is uniformly convergent with respect to the diffusion parameter, having order near two in space and order one or 3/2, depending on the method used, in time. We show some numerical examples which illustrate the theoretical results, in the case of using the Euler implicit method, and give better numerical behaviour than that predicted theoretically, showing order two in time and order N?2log2N in space, if the Crank‐Nicolson scheme is used to discretize the time variable. Finally, we construct a numerical algorithm by combining a third order A‐stable SDIRK with two stages and a third‐order HODIE difference scheme, showing its uniformly convergent behavior, reaching order three, up to a logarithmic factor. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号