首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
High‐performance liquid chromatography/diode‐array detection (HPLC/DAD), time‐of‐flight mass spectrometry (HPLC/TOFMS) and quadrupole ion trap mass spectrometry (HPLC/QIT‐MS) were used for separation, identification and structural analysis of lignans in Schisandra chinensis and rat plasma after oral administration of the herbal extract. Six lignans in Schisandra chinensis extract were identified unambiguously by comparing the retention time, their characteristic ultraviolet (UV) absorption and accurate mass measurement. A formula database of known lignans in Schisandra chinensis was established, against which the other 15 lignans were identified effectively based on the accurate extract masses and formulae acquired by HPLC/TOFMS. In order to distinguish the isomers, multi‐stage mass spectrometry (ion trap mass spectrometry, MSn) was also used. The fragmentation behavior of the lignans in the ion trap mass spectrometer was studied by the six lignan standards, and their fragmentation rules in MSn spectra were summarized. These deduced fragmentation rules of lignans were successfully implemented in distinguishing the three groups of isomers in Schisandra chinensis by HPLC/QIT‐MS. By using the three different analytical techniques, 21 lignans in Schisandra chinensis were identified within 30 min. After oral administration of the extract, 11 lignans in rat plasma were detected and identified by comparing their retention time, characteristic UV absorption and accurate mass measurement of peaks in HPLC/TOFMS chromatograms of the herbal extract. Finally, HPLC/TOFMS fingerprints of Schisandra chinensis in vitro and rat plasma in vivo were established. It is concluded that a rapid and effective method based on three analytical techniques for identification of chemical components was established, which is useful for rapid identification of multiple components in Schisandra chinensis in vitro and in vivo. In addition, it can provide help for further pharmacology and action mechanism study of lignans in Schisandra chinensis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
A technique using comprehensive two‐dimensional gas chromatography/time‐of‐flight mass spectrometry (GC × GC/TOFMS) is applied to qualitative and quantitative drug testing. Human serum was ‘spiked’ with known quantities of benzodiazepines and a ‘street heroin’ mixture including some of the major metabolites and impurities. The sample components were extracted from the matrix by solid‐phase extraction (SPE). Constituents containing polar hydroxyl and/or secondary amine groups were derivatised with N‐methyl‐N‐(tert‐butyldimethyl)trifluoroacetamide (MTBSTFA) to improve the chromatographic performance. An orthogonal separation of the matrix constituents was achieved by coupling a DB‐5ms (5% phenyl) to a BPX50 (50% phenyl) GC column. The eluant was focused onto the second column by a twin‐stage cryo‐modulator. Rapid 6 s modulation times were achieved by transfer from a 30 m × 0.25 mm (length × internal diameter) to a 2 m × 0.1 mm column. TOFMS with rapid spectral acquisition (≤500 spectra/s) was employed in the mass range m/z 40–650. A clean mass spectrum was obtained for each analyte using mass spectral deconvolution software. The sensitivity and repeatability of the method were evaluated by the preparation of calibration standards for two benzodiazepines, flunitrazepam and its major metabolite 7‐aminoflunitrazepam (7‐amino‐FN), in the concentration range 5–1000 ng/mL. The limits of detection (LODs) and limits of quantitation (LOQs), calculated by repeat injections (×10) of the lowest standard, were 1.6 and 5.4 ng/mL (flunitrazepam); 2.5 and 8.5 ng/mL (7‐amino‐FN), respectively. There is scope to extend this protocol to screen a large number of drugs and metabolites stored in a library database. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The use of hybrid quadrupole ion mobility spectrometry time‐of‐flight mass spectrometry (Q/IMS/TOFMS) in the metabolite profiling of leflunomide (LEF) and acetaminophen (APAP) is presented. The IMS drift times (Td) of the drugs and their metabolites were determined in the IMS/TOFMS experiments and correlated with their exact monoisotopic masses and other in silico generated structural properties, such as connolly molecular area (CMA), connolly solvent‐excluded volume (CSEV), principal moments of inertia along the X, Y and Z Cartesian coordinates (MI‐X, MI‐Y and MI‐Z), inverse mobility and collision cross‐section (CCS). The correlation of Td with these parameters is presented and discussed. IMS/TOF tandem mass spectrometry experiments (MS2 and MS3) were successfully performed on the N‐acetyl‐p‐benzoquinoneimine glutathione (NAPQI‐GSH) adduct derived from the in vitro microsomal metabolism of APAP. As comparison, similar experiments were also performed using hybrid triple quadrupole linear ion trap mass spectrometry (QTRAPMS) and quadrupole time‐of‐flight mass spectrometry (QTOFMS). The abilities to resolve the product ions of the metabolite within the drift tube and fragment the ion mobility resolved product ions in the transfer travelling wave‐enabled stacked ring ion guide (TWIG) demonstrated the potential applicability of the Q/IMS/TOFMS technique in pharmaceutical metabolite profiling. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Salvianolic acid A (SalA) is one of the main active constituents in Salvia miltiorrhiza (Danshen). Although the pharmacokinetics of SalA in rats after intravenous (i.v.) administration of Danshen injection has been reported, the information relevant to the metabolites of SalA in vivo is absent so far. In this study, by means of liquid chromatography with time‐of‐flight mass spectrometry (LC/TOFMS) and liquid chromatography with ion trap mass spectrometry (LC/MSn) techniques, the unknown metabolites of SalA in rat plasma after i.v. administration of the purified SalA at the dose of 20 mg/kg body weight were identified. A liquid‐liquid extraction method was established to separate the metabolites from the plasma and the chromatographic separations were performed on a Xterra MS C18 column (100 mm × 4.6 mm i.d., 3.5 µm) with acetonitrile/methanol/water/formic acid (20.5:19.5:64: 0.05, v/v/v/v) as the mobile phase at a constant flow rate of 0.2 mL/min. Based on the data obtained from the LC/TOFMS determination (the total ion chromatograms, MS spectra and extracted ion chromatograms), in combination with the characteristic fragment ions acquired from the LC/MSn determination, five metabolites were identified as SalA‐monoglucuronide, monomethyl‐SalA‐monoglucuronide, mono‐methyl‐SalA, dimethyl‐SalA and dimethyl‐SalA‐monoglucuronide, and the possible chemical structures were deduced. The results indicated that SalA might mainly undergo two metabolic pathways in vivo in rats, which were methylation and glucuronidation. The present studies have laid a solid foundation for the metabolic mechanism of SalA in vivo. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Designs of a quadrupole ion trap (QIT) as a source for time‐of‐flight (TOF) mass spectrometry are evaluated for mass resolution, ion trapping, and laser activation of trapped ions. Comparisons are made with the standard hyperbolic electrode ion trap geometry for TOF mass analysis in both linear and reflectron modes. A parallel‐plate design for the QIT is found to give significantly improved TOF mass spectrometer performance. Effects of ion temperature, trapped ion cloud size, mass, and extraction field on mass resolution are investigated in detail by simulation of the TOF peak profiles. Mass resolution (mm) values of several thousand are predicted even at room temperature with moderate extraction fields for the optimized design. The optimized design also allows larger radial ion collection size compared with the hyperbolic ion trap, without compromising the mass resolution. The proposed design of the QIT also improves the ion–laser interaction volume and photon collection efficiency for fluorescence measurements on trapped ions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
High‐performance liquid chromatography with diode‐array detection (HPLC/DAD), time‐of‐flight mass spectrometry (HPLC/TOFMS) and quadrupole ion trap mass spectrometry (HPLC/QITMS) were used for separation, identification and structural analysis of furocoumarins in Angelica dahurica. Two furocoumarins (imperatorin and isoimperatorin) in Angelica dahurica extract were identified unambiguously by comparing their relative retention times, characteristic ultraviolet information and accurate mass measurement. A formula database of known furocoumarins in Angelica dahurica was established, against which the other 21 furocoumarins were identified effectively based on the accurate extract masses and formulae acquired by HPLC/TOFMS. In order to distinguish the isomers, multi‐stage mass spectrometry (MSn, ion trap mass spectrometry) was used. General fragmentation behavior of the furocoumarins in the ion trap mass spectrometer was studied by the two furocoumarin standards, and their fragmentation rules in MSn spectra were summarized. These deduced fragmentation rules of furocoumarins were successfully implemented in distinguishing the three groups of isomers in Angelica dahurica by HPLC/QITMS. By using the three different analytical techniques, 23 furocoumarins in Angelica dahurica were tentatively identified within 30 min. Finally, HPLC/TOFMS fingerprints of Angelica dahurica were established by which it can be concluded that a rapid and effective method based on the three analytical techniques for identification of chemical components was established. This can provide help for further quality control of Angelica dahurica and pharmacology mechanism study of furocoumarins in Angelica dahurica. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
High‐performance liquid chromatography with diode‐array detection (HPLC/DAD), time‐of‐flight mass spectrometry (HPLC/TOFMS) and quadrupole ion trap mass spectrometry (HPLC/QITMS) were used for separation and identification of several compounds in licorice and rat plasma after oral administration of the herbal extract. Three phenolic compounds and one triterpenoid in licorice extract were unambiguously identified by comparing with the standard compounds. A formula database of known compounds in licorice was established, against which the other 42 compounds were identified effectively based on the accurate extract masses and formulae acquired by HPLC/TOFMS. In order to differentiate the isomers, tandem mass spectrometry was also used. The deduced fragmentation behaviors in QITMS were used to distinguish seven groups of isomers in licorice. By means of the three detectors, 46 compounds in licorice were identified. After oral administration of the extract, 25 compounds in rat plasma were detected and identified by comparing and contrasting the compounds measured in licorice with those in the plasma samples by HPLC/TOFMS. It is concluded that a rapid and effective method based on three analytical techniques was established, which is useful for identification of multiple compounds in licorice in vitro and in vivo. The result should be very useful for the quality control and curative mechanism study of licorice. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The α‐amino groups of histidine and lysine were derivatized with p‐carboxylbenzyltriphenylphosphonium to form the pseudo dipeptides, PHis and PLys, which can be sensitively detected by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOFMS) due to the fixed positive charge of the phosphonium group. Detection limits of PHis and PLys by MALDI‐TOFMS were both 30 fmol with a signal‐to‐noise ratio of 5:1. These pseudo dipeptides were excellent surrogates for His‐ or Lys‐containing peptides in model reactions mimicking proteins with reactive electrophiles, prominently those generated by peroxidation of polyunsaturated fatty acids including 4‐hydroxy‐2(E)‐nonenal (HNE), 4‐oxo‐2(E)‐nonenal (ONE), 2(E)‐octenal, and 2(E)‐heptenal. An air‐saturated solution of linoleic acid (d0:d5 = 1:1) was incubated in the presence of Fe(II) and ascorbate with these two pseudo dipeptides, and the reaction products were characterized by MALDI‐TOFMS and liquid chromatography/electrospray ionization mass spectrometry (LC/ESI‐MS). By using PHis and PLys, the previously reported ONE‐derived His‐furan adduct was detected along with evidence for a cyclic α,β‐unsaturated ketone. A dimer formed from ONE was found to react with PHis through Michael addition. Alkenals were found to form two novel adducts with PLys. 2(E)‐Octenoic acid–His Michael adduct and Nε‐pentanoyllysine were identified as potential protein side‐chain adducts modified by products of linoleic acid peroxidation. In addition, when PHis or PLys and AcHis or BocLys were exposed to the linoleic acid peroxidation, an epoxy‐keto‐ocatadecenoic acid mediated His–His cross‐link was detected, along with the observation of a His–ONE/9,12‐dioxo‐10‐dodecenoic acid–Lys derived pyrrole cross‐link. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A method for the accurate mass measurement of negative radical ions by matrix‐assisted laser desorption/ionisation time‐of‐flight mass spectrometry (MALDI‐TOFMS) is described. This is an extension to our previously described method for the accurate mass measurement of positive radical ions (Griffiths NW, Wyatt MF, Kean SD, Graham AE, Stein BK, Brenton AG. Rapid Commun. Mass Spectrom. 2010; 24: 1629). The porphyrin standard reference materials (SRMs) developed for positive mode measurements cannot be observed in negative ion mode, so fullerene and fluorinated porphyrin compounds were identified as effective SRMs. The method is of immediate practical use for the accurate mass measurement of functionalised fullerenes, for which negative ion MALDI‐TOFMS is the principal mass spectrometry characterisation technique. This was demonstrated by the accurate mass measurement of six functionalised C60 compounds. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Current in silico tools were evaluated for their ability to predict metabolism and mass spectral fragmentation in the context of analytical toxicology practice. A metabolite prediction program (Lhasa Meteor), a metabolite detection program (Bruker MetaboliteDetect), and a fragmentation prediction program (ACD/MS Fragmenter) were used to assign phase I metabolites of the antipsychotic drug quetiapine in the liquid chromatography/time‐of‐flight mass spectrometry (LC/TOFMS) accurate mass data from ten autopsy urine samples. In the literature, the main metabolic routes of quetiapine have been reported to be sulfoxidation, oxidation to the corresponding carboxylic acid, N‐ and O‐dealkylation and hydroxylation. Of the 14 metabolites predicted by Meteor, eight were detected by LC/TOFMS in the urine samples with use of MetaboliteDetect software and manual inspection. An additional five hydroxy derivatives were detected, but not predicted by Meteor. The fragment structures provided by ACD/MS Fragmenter software confirmed the identification of the metabolites. Mean mass accuracy and isotopic pattern match (SigmaFit) values for the fragments were 2.40 ppm (0.62 mDa) and 0.010, respectively. ACD/MS Fragmenter, in particular, allowed metabolites with identical molecular formulae to be differentiated without a need to access the respective reference standards or reference spectra. This was well exemplified with the hydroxy/sulfoxy metabolites of quetiapine and their N‐ and O‐dealkylated forms. The procedure resulted in assigning 13 quetiapine metabolites in urine. The present approach is instrumental in developing an extensive database containing exact monoisotopic masses and verified retention times of drugs and their urinary metabolites for LC/TOFMS drug screening. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
12.
Aconite alkaloids from the roots of Aconitum carmichaeli (Fuzi, in Chinese) have been investigated by rapid‐resolution liquid chromatography coupled with time‐of‐flight mass spectrometry (TOFMS) in positive mode. With dynamic adjustment of the key role as fragmentor voltage in TOFMS, an efficient transmission of the ions was achieved to obtain the best sensitivity for providing the molecular formula for each analyte, and abundant fragment ions for structural information. Fifteen authentic standards isolated from Fuzi with various structures were first characterized by TOFMS, including diester‐diterpenoid alkaloids (DDAs), monoester‐diterpenoid alkaloids (MDAs), alkylol amine‐diterpenoid alkaloids (ADAs), veatchine‐type alkaloids and atisine‐type alkaloids. Fragmentation rules and key diagnostic fragment ions have been summarized, and possible pathways of fragmentation have been proposed. By accurate mass measurements within 5 ppm error for each ion, 30 C19‐diterpenoid alkaloids including 10 DDAs, 3 MDAs, 9 ADAs and 8 other type alkaloids, and 8 C20‐diterpenoid alkaloids including 4 veatchine‐type alkaloids and 4 atisine‐type alkaloids could be identified in a methanolic extract of Fuzi. Some isomers of aconite alkaloids were also differentiated. Based on the differences between their fragmentation pathways and special fragment ions, each type of aconite alkaloids was differentiated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
During the discovery process of novel compounds, it is of significant importance to differentiate novel from known compounds in crude extracts before starting the time‐consuming process of purification. Bufadienolides are the main active components of the skin of the toad Bufo bufo gargarizans Cantor (toad skin), an important traditional Chinese medicine. The fragmentation behavior and mass spectra profiles of bufadienolides standards were investigated using ultra‐performance liquid chromatography/electrospray ionization quadrupole time‐of‐flight mass spectrometry (UPLC/ESI‐Q‐TOFMS). Several fragmentation rules were summarized and applied to characterize novel and known bufadienolides in toad skin. Characteristic substituent groups could be identified by both diagnostic ions and their relative abundance. Bufadienolide stereoisomers could be differentiated from positional isomers by comparing fragment abundance profiles. This was used to characterize new stereoisomers for known bufadienolides. A total of 39 bufadienolides were screened out using a systematic method developed in our laboratory. In addition to 19 known bufadienolides, 20 putative novel compounds, including 8 stereoisomers, were characterized. UPLC/Q‐TOFMS was demonstrated to be a powerful tool for the characterization of low‐abundance bufadienolides in complex samples. This study provides guidelines for the targeted isolation of novel bufadienolides from natural products. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Mass spectrometric fragmentation data of neo‐clerodane diterpenes are almost inexistent but they can prove helpful for the qualitative and quantitative analysis of these compounds as well as for the identification of unknown compounds belonging to this class of plant secondary metabolites. [M–H] ions of nine neo‐clerodane diterpenes (1–9), recently isolated from Teucrium chamaedrys, were generated by electrospray ionization and were fragmented in the collision cell of a Triple Quadrupole (TQ) and of a Quadrupole Ion Trap (QIT) mass spectrometer. The deprotonated neo‐clerodane glucosides, chamaedryoside A and B (1, 2), readily lost the sugar residue to give, as their main fragmentation channel, the neo‐clerodane ions, I and II, which were structurally characterized by TQ and QIT MS. The collision‐activated dissociation (CAD) mass spectra of I and II and of deprotonated neo‐clerodanes 3–9 allowed us to reach some general conclusions on the fragmentation pathways of this class of compounds. For example, teuflin and its OH derivatives, teucrin A, teuflidin and 6‐β‐hydroxyteucridin, showed a characteristic fragmentation pattern involving the loss of 94 Da and 124 Da from the lactone moiety, whereas a loss of 44 Da was observed for teucrin E, and of 58 Da for teucrin F and G. In addition, several compound‐specific fragmentations were observed and can be proposed for the identification of individual compounds. The systematic approach allowed us to hypothesize the mechanisms of the most important collision‐activated dissociation/isomerization channels. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Linoleic acid (LA) and LA‐esters are the precursors of LA hydroperoxides, which are readily converted to 9‐ and 13‐hydroxy‐?octadecadienoic acid (HODE) and 9‐ and 13‐oxo‐?octadecadienoic acid (oxo ODE) metabolites in vivo. These four oxidized LA metabolites (OXLAMs) have been implicated in a variety of pathological conditions. Therefore, their accurate measurement may provide mechanistic insights into disease pathogenesis. Here we present a novel quadrupole time‐of‐flight mass spectrometry (Q‐TOFMS) method for quantitation and identification of target OXLAMs in rat plasma. In this method, the esterified OXLAMs were base‐hydrolyzed and followed by liquid–liquid extraction. Quantitative analyses were based on one‐point standard addition with isotope dilution. The Q‐TOFMS data of target metabolites were acquired and multiple reaction monitoring extracted‐ion chromatograms were generated post‐acquisition with a 10 ppm extraction window. The limit of quantitation was 9.7–35.9 nmol/L depending on the metabolite. The method was reproducible with a coefficient of variation of <18.5%. Mean concentrations of target metabolites in rat plasma were 57.8, 123.2, 218.1 and 57.8 nmol/L for 9‐HODE, 13‐HODE, 9‐oxoODE and 13‐oxoODE, respectively. Plasma levels of total OXLAMs were 456.9 nmol/L, which correlated well with published concentrations obtained by gas chromatography/mass spectrometry (GC/MS). The concentrations were also obtained utilizing a standard addition curve approach. The calibration curves were linear with correlation coefficients of >0.991. Concentrations of 9‐HODE, 13‐HODE, 9‐oxoODE and 13‐oxoODE were 84.0, 138.6, 263.0 and 69.5 nmol/L, respectively, which were consistent with the results obtained from one‐point standard addition. Target metabolites were simultaneously characterized based on the accurate Q‐TOFMS data. This is the first study of secondary LA metabolites using Q‐TOFMS. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

16.
A method for the accurate mass measurement of positive radical ions by matrix‐assisted laser desorption/ionisation time‐of‐flight mass spectrometry (MALDI‐TOFMS) is described. Initial use of a conjugated oligomeric calibration material was rejected in favour of a series of meso‐tetraalkyl/tetraalkylaryl‐functionalised porphyrins, from which the two calibrants required for a particular accurate mass measurement were chosen. While all measurements of monoisotopic species were within ±5 ppm, and the method was rigorously validated using chemometrics, mean values of five measurements were used for extra confidence in the generation of potential elemental formulae. Potential difficulties encountered when measuring compounds containing multi‐isotopic elements are discussed, where the monoisotopic peak is no longer the lowest mass peak, and a simple mass‐correction solution can be applied. The method requires no significant expertise to implement, but care and attention is required to obtain valid measurements. The method is operationally simple and will prove useful to the analytical chemistry community. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Tamoxifen (TMX) is a nonsteroidal estrogen antagonist drug used for the treatment of breast cancer. It is also included in the list of banned substances of the World Anti Doping Agency (WADA) prohibited in and out of competition. In this work, the excretion of urinary metabolites of TMX after a single therapeutic dose administration in rats has been studied using ultra‐high‐performance liquid chromatography electrospray time‐of‐flight mass spectrometry (UHPLC‐TOFMS). A systematic strategy based on the search of typical biotransformations that a xenobiotic can undergo in living organisms, based on their corresponding molecular formula modification and accurate mass shifts, was applied for the identification of TMX metabolites. Prior to UHPLC‐TOFMS analyses, a solid‐phase extraction step with polymeric cartridges was applied to urine samples. Up to 38 TMX metabolites were detected. Additional collision induced dissociation (CID) MS/MS fragmentation was performed using UHPLC‐QTOFMS. Compared with recent previous studies in human urine and plasma, new metabolites have been reported for the first time in urine. Metabolites identified in rat urine include the oxygen addition, owing to different possibilities for the hydroxylation of the rings in different positions (m/z 388.2271), the incorporation of two oxygen atoms (m/z 404.2220) (including dihydroxylated derivatives or alternatives such as epoxidation plus hydroxylation or N‐oxidation and hydroxylation), epoxide formation or hydroxylation and dehydrogenation [m/z 386.2114 (+O –H2)], hydroxylation of the ring accompanied by N‐desmethylation (m/z 374.2115), combined hydroxylation and methoxylation (m/z 418.2377), desaturated TMX derivate (m/z 370.2165) and its N‐desmethylated derivate (m/z 356.2009), the two latter modifications not previously being reported in urine. These findings confirm the usefulness of the proposed approach based on UHPLC‐TOFMS. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Reactive metabolites are believed to be one of the main reasons for unexpected drug‐induced toxicity issues, by forming covalent adducts with cell proteins or DNA. Due to their high reactivity and short lifespan they are not directly detected by traditional analytical methods, but are most traditionally analyzed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) after chemical trapping with nucleophilic agents such as glutathione. Here, a simple but very efficient assay was built up for screening reactive drug metabolites, utilizing stable isotope labeled glutathione, potassium cyanide and semicarbazide as trapping agents and highly sensitive ultra‐performance liquid chromatography/time‐of‐flight mass spectrometry (UPLC/TOFMS) as an analytical tool. A group of twelve structurally different compounds was used as a test set, and a large number of trapped metabolites were detected for most of them, including many conjugates not reported previously. Glutathione‐trapped metabolites were detected for nine of the twelve test compounds, whereas cyanide‐trapped metabolites were found for eight and semicarbazide‐trapped for three test compounds. The high mass accuracy of TOFMS provided unambiguous identification of change in molecular formula by formation of a reactive metabolite. In addition, use of a mass defect filter was found to be a usable tool when mining the trapped conjugates from the acquired data. The approach was shown to provide superior detection sensitivity in comparison to traditional methods based on neutral loss or precursor ion scanning with a triple quadrupole mass spectrometer, and clearly more efficient detection and characterization of reactive drug metabolites with a simpler test setup. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
In this study, the technique of high‐performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight mass spectrometry (HPLC‐ESI‐Q‐TOFMS) was used to analyze and identify the absorptive constituents and their metabolites in drug‐containing urine of Wuzhishan (WZS)‐miniature pigs administered with Puerariae Lobatae Radix (PLR) decoction. With the accurate mass measurements (<5 ppm) and effective MS2 fragment ions, 96 compounds, including eight original constituents and 88 metabolites, were identified from the drug‐containing urine. Among these, 64 metabolites were new ones and their structures can be categorized into five types: isoflavones, puerols, O‐desmethylangolensins, equols and isoflavanones. In particular, puerol‐type constituents in PLR were first proved to be absorptive in vivo. Meanwhile, the metabolic pathways of PLR in vivo were investigated. On the basis of relative content of the identified compounds, 13 major metabolites accounting for approximately 50% of the contents, as well as their corresponding 12 prototype compounds, were determined as the major original absorptive constituents and metabolites of PLR in vivo. The HPLC‐ESI‐Q‐TOFMS technique proved to be powerful for characterizing the chemical constituents from the complicated traditional Chinese medicine matrices in this research. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A fast high‐performance liquid chromatography (HPLC) method coupled with diode‐array detection (DAD) and electrospray ionization time‐of‐flight mass spectrometry (ESI‐TOFMS) has been developed for rapid separation and sensitive identification of major constituents in Radix Paeoniae Rubra (RPR). The total analysis time on a short column packed with 1.8‐µm porous particles was about 20 min without a loss in resolution, six times faster than the performance of a conventional column analysis (115 min). The MS fragmentation behavior and structural characterization of major compounds in RPR were investigated here for the first time. The targets were rapidly screened from RPR matrix using a narrow mass window of 0.01 Da to restructure extracted ion chromatograms. Accurate mass measurements (less than 5 ppm error) for both the deprotonated molecule and characteristic fragment ions represent reliable identification criteria for these compounds in complex matrices with similar if not even better performance compared with tandem mass spectrometry. A total of 26 components were screened and identified in RPR including 11 monoterpene glycosides, 11 galloyl glucoses and 4 other phenolic compounds. From the point of time savings, resolving power, accurate mass measurement capability and full spectral sensitivity, the established fast HPLC/DAD/TOFMS method turns out to be a highly useful technique to identify constituents in complex herbal medicines. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号