首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The pressure‐volume‐temperature (PVT) dependencies of polyamide‐6 and its nanocomposites (polymeric nanocomposites) were measured at temperatures T = 300–600 K and pressures P = 0.1–190 MPa, thus spanning the range of molten and “solid” phases. The Simha‐Somcynsky (S‐S) cell‐hole equation of state (EOS) was used for describing the molten region. At Tg(P) ≤ TTm(P), the “solid” phase is a mixture of the liquid polyamide‐6 with dispersion of crystals. Accordingly, the PVT behavior in this region was described as a combination of the S‐S EOS for the liquid phase and the Midha‐Nanda‐Simha‐Jain (MNSJ) EOS for the crystalline one. These two theories based on different models yielded two sets of the characteristic reducing parameters, P*, T*, V* and the segmental molecular weight, Ms. Incorporation of 2 and 5 wt % clay increased P* and reduced T* and V*, but the effects were small. Fitting the combination of S‐S and MNSJ EOS' to isobaric “solid” phase data yielded the total crystallinity, Xcryst, and the correcting excess specific volume, ΔVm,c. Both parameters were sensitive to pressure, P, and the clay content, w—the former increased with P and w, whereas the latter decreased. The raw PVT data were numerically differentiated to obtain the thermal expansion and compressibility coefficients, α and κ, respectively. At T < Tm, addition of clay reduced their relative magnitude, whereas at T > Tm, the opposite effect was observed, most likely owing to the excess of intercalant in the polymeric nanocomposites samples. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 966–980, 2009  相似文献   

2.
A series of hairy‐rod polymers, poly{2,5‐bis[(4‐alkoxyphenyl)oxycarbonyl]styrenes} (P‐OCm, m = 1, 2, 4, 6, 8, 10, 12, 14, 16, and 18) were designed and successfully synthesized via free radical polymerization. The chemical structure of the monomers was confirmed by elemental analysis, 1H NMR and 13C NMR. The molecular characterizations of the polymers were performed with 1H NMR and gel permeation chromatography. The phase structures and transitions of the polymers were investigated by the combination of techniques including differential scanning calorimetry, wide‐angle X‐ray diffraction, polarized optical microscopy, and rheological measurement. The experimental results revealed that the self‐assembly behaviors of P‐OCm changed with the increase in m. First, the P‐OCm (m = 1, 2) showed only a stable liquid crystalline phase above Tg. Second, with the increasing length of alkoxy tails, the P‐OCm (m = 4, 6, 8) presented a re‐entrant isotropic phase above Tg and a liquid crystalline phase at higher temperature. Third, the P‐OCm (m = 10, 12, 14, 16, 18) exhibited an unusual re‐entrant isotropic phase which was separating SmA (in low temperature) and columnar phases (in high temperature). It was the first time that mesogen‐jacketed liquid crystalline polymers formed smectic phase, re‐entrant isotropic phase, and columnar phases in one polymer due to the microphase separation and the driving force of the entropy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
A series of OEGylated random copolypeptides with similar main‐chain lengths and different oligo(ethylene glycol) (OEG) molar content and chain lengths were prepared from triethylamine initiated ring‐opening polymerization (ROP) of OEGylated γ‐benzyl‐L‐glutamic acid based N‐carboxyanhydride (OEGmBLG–NCA, m = 2, 3) and γ‐benzyl‐L‐glutamic acid based N‐carboxyanhydride (BLG–NCA). 1H NMR analysis verified copolypeptides structures and determined the OEG molar content (x). FTIR analysis further confirmed the molecular structures, indicated α‐helical conformations of copolypeptides in the solid‐state, and revealed H‐bonding interactions between OEG pendants and alcoholic solvents. The copolypeptides exhibited a reversible upper critical solution temperature (UCST)‐type phase behavior in various alcoholic solvents (i.e., methanol, ethanol, 1‐propanol, 1‐butanol, and 1‐pentanol) depending on the x values and OEG side‐chain lengths (m). Variable‐temperature UV–vis analysis revealed that the UCST‐type transition temperatures (Tpts) of the copolypeptides in alcohols decreased as x or m value increased or as polymer concentration decreased. Tpts of copolypeptides with high x values (x ≥ 0.50) increased as the number of methylene of the alcoholic solvent increased from 3 (i.e., 1‐propanol) to 5 (i.e., 1‐pentanol). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3444–3453  相似文献   

4.
A sub‐melting‐temperature exotherm in a polyamide‐6/clay nanocomposite (containing 3 wt % montmorillonite) was investigated with differential scanning calorimetry. It existed only via air‐quenching from the melt; it did not exist at higher or lower heating rates. The exotherm could be ascribed to frozen‐in stresses in the interlamellar regions through hydrogen bonding. A combination of larger internal stresses and larger crystallinity was necessary to produce this exotherm. Its appearance was closely connected to the addition of montmorillonite. During the air‐quenching process, montmorillonite not only greatly accelerated the crystallization rate of polyamide‐6 but also further intensified the internal stresses produced during the quenching process. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 378–382, 2005  相似文献   

5.
The effect of tin fluorophosphate‐glass (Pglass) nanoparticles on the polyamide‐6 (PA6) matrix in Pglass/PA6 hybrids has been investigated by 13C solid‐state nuclear magnetic resonance (NMR). The crystallinity determined by direct‐polarization 13C NMR combined with longitudinal relaxation‐time (T1C) filtering varied between 31 and 44%. T1C‐filtered 13C spectra with cross polarization clearly showed resonances of both the α‐ and γ‐crystalline phases of PA6, typically at ratios near 45:55, while the similarly processed neat polymer contained only the α‐phase. This suggests that the Pglass promotes the growth of the γ‐crystalline phase. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 857–860, 2008  相似文献   

6.
Electric‐field‐induced molecular alignments of side‐chain liquid‐crystalline polyacetylenes [? {HC?C[(CH2)mOCO‐biph‐OC7H15]}? , where biph is 4,4′‐biphenylyl and m is 3 (PA3EO7) or 9 (PA9EO7)] were studied with X‐ray diffraction and polarized optical microscopy. An orientation as high as 0.84 was obtained for PA9EO7. Furthermore, the molecular orientation of PA9EO7 was achieved within a temperature range between the isotropic‐to‐smectic A transition temperature and 115 °C, and this suggested that the orientational packing was affected by the thermal fluctuation of the isotropic liquid and the mobility of the mesogenic moieties. The maximum achievable orientation for PA9EO7 was much greater than that for PA3EO7. This was the first time that the electric‐field‐induced molecular orientation of a side‐chain liquid‐crystalline polymer with a stiff backbone was studied. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1333–1341, 2004  相似文献   

7.
This work examines the stereochemical control and polymerizability of exo‐methylene‐lactide (MLA) or (6S)‐3‐methylene‐6‐methyl‐1,4‐dioxane‐2,5‐dione, a chiral monomer derived from l ‐lactide, toward vinyl‐addition and ring‐opening polymerization (ROP) pathways, respectively. Currently, no information on the stereochemistry of the vinyl‐addition polymerization of MLA is known, and the possible ROP pathway is unexplored. Accordingly, this work first investigated the stereochemical control and other characteristics of the radical polymerization of MLA and its copolymerization with an analogous exo‐methylene‐lactone, γ‐methyl‐α‐methylene‐γ‐butyrolactone (MMBL), and di‐methylene‐lactide (DMLA) or 3,6‐dimethylene‐1,4‐dioxane‐2,5‐dione. The MLA homopolymerization produced optically active, but atactic, vinyl‐type polymers having a specific rotation of [α]23D = ?42 ± 4°, a high Tg from 229 to 254 °C, and a medium (Mw = 76.3 kg/mol, ? = 1.16) to high (Mw = 358 kg/mol, ? = 2.83) molecular weight, depending on the solvent. The copolymerization of MLA with MMBL afforded copolymers exhibiting enhanced thermal stability, while its copolymerization with DMLA led to cross‐linked polymers. The results obtained from the model reactions designed to probe the possible ROP indicate that the nonpolymerizability of MLA by initiators or catalysts comprising acidic, protic, and/or nucleophilic reagents is due to the high sensitivity of MLA toward such common ROP reagents that trigger decomposition or other types of transformations of MLA forming nonpolymerizable derivatives. © 2015 Wiley Periodicals, Inc. J. Polym. Sci. Part A: Polym. Chem. 2015 , 53, 1523–1532  相似文献   

8.
The title compound  C6N7(NHNH2)3 ( 1 ) was obtained from melem C6N7(NH2)3 or melon [C6N7(NH2)NH]n and hydrazine by an autoclave synthesis. Upon treatment with a 10 % HCl solution it is transformed into the trihydrochloride  [C6N7(NHNH3)3]Cl3 ( 2 ). Compounds 1 and 2 were analysed with 13C NMR, 15N NMR, FTIR and Raman spectroscopy. Furthermore, the single‐crystal X‐ray structure of the pentahydrate of 2 is reported (P\bar{1} , a = 674.96(3), b = 1214.17(6), c = 1272.15(6) pm, α = 66.288(2)°, β = 75.153(2)°, γ = 80.420(2)°, V = 920.30(8)·106 pm3, Z = 2, T = 90(2) K). The thermal decomposition of 1 and 2 was investigated with TG/DTA. Reaction of 1 with NaNO2/HCl yields triazido‐s‐heptazine, C6N7(N3)3 ( 3 ). Tris(tri‐n‐butylphosphinimino)‐s‐heptazine ( 4 ) was synthesised from 3 and characterised by means of 13C, 31P, 1H NMR, FTIR and MALDI‐TOF spectroscopy. Similar to s‐heptazine derivative 3 , compounds 1 and 4 are precursors for graphitic carbon nitrides, which have attracted considerable attention recently, and to various potential applications, such as flame retardants and (photo) catalysis.  相似文献   

9.
Summary: An attenuated total reflection FT‐IR spectroscopic study of the hydrogen bonding, molecular orientation, and crystalline phase transitions in polyamide 6 (PA6)/clay nanocomposite (PA6CN) fibers is proposed. The nanoscale dispersed clay layers lowered the degree of order of hydrogen bonding, affected little the hydrogen bonding strength, and increased the degree of orientation of both γ crystalline and overall domains. A partial γ to α phase transition appeared with time.

Schematic representation of the attenuated total reflection FT‐IR dichroism measurements.  相似文献   


10.
The rheological behavior of polyaniline‐(±champhor‐10‐sulfonic acid)0.5m‐cresol [PANI‐CSA0.5m‐cresol] gel nanocomposites (GNCs) with Na‐montmorillonite clay (intercalated tactoids) is studied. The shear viscosity exhibits Newtonian behavior for low shear rate (<2 × 10?4 s?1) and power law variation for higher shear rate. The zero shear viscosity (η0) and the characteristic time (λ) increase but the power law index (n) decrease with increase in clay concentration. In the GNCs storage modulus (G′) and loss modulus (G″) are invariant with frequency in contrast to the pure gel. The G′ and G′ exhibit the gel behavior of the GNCs up to 105 °C in contrast to the melting for the pure gel at 75.7 °C. The percent increase of G′ of GNCs increases dramatically (619% in GNC‐5) with increasing clay concentration. The conductivity values are 10.5, 5.65, 5.51, and 4.75 S/cm for pure gel, GNC‐1, GNC‐3, and GNC‐5, respectively, promising their possible use in soft sensing devices. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 28–40, 2008  相似文献   

11.
In the current paper, a comparative study on the direct solid state polycondensation (DSSP) reaction of different terephthalate based semi‐aromatic salts (XT salts, X = 4–18) in the TGA micro‐reactor is reported. High purity XT salts were prepared in solution and were used as starting materials for DSSP. The reaction temperature (TDSSP) for each salt was suitably selected as 20 °C–30 °C below the melting point Tm of the respective salt. The PAXT products were characterized by TGA/DSC, liquid 1H‐NMR, and SEM. In the DSSP of XT salts, some diamine is always lost to the gas phase and as a consequence, the attainable molecular weight of the polymer formed gets limited by the unbalance of acid and amine end‐groups. The TGA curves show that as the diamine length increases and its volatility decreases, higher molecular weights are obtained. SEM pictures of the products reveal true solid character during the polymerization reaction up to and including PA10T, whereas PA5T, PA12T, and PA18T reveal stickiness and agglomeration during reaction. A possible mechanism explaining such behaviour is also provided. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2493–2506  相似文献   

12.
Per‐2,3‐acetyl‐β‐cyclodextrin with seven primary hydroxyl groups was synthesized by selective modification and used as multifunctional initiator for the ring‐opening polymerization of ε‐caprolactone (CL). Well‐defined β‐cyclodextrin‐centered seven‐arm star poly(ε‐caprolactone)s (CDSPCLs) with narrow molecular weight distributions (≤1.15) have been successfully prepared in the presence of Sn(Oct)2 at 120 °C. The molecular weight of CDSPCLs was characterized by end group 1H NMR analyses and size‐exclusion chromatography (SEC), which could be well controlled by the molar ratio of the monomer to the initiator. Furthermore, amphiphilic seven‐arm star poly(ε‐caprolactone‐b‐ethylene glycol)s (CDSPCL‐b‐PEGs) were synthesized by the coupling reaction of CDSPCLs with carboxyl‐terminated mPEGs. 1H NMR and SEC analyses confirmed the expected star block structures. Differential scanning calorimetry analyses suggested that the melting temperature (Tm), the crystallization temperature (Tc), and the crystallinity degree (Xc) of CDSPCLs all increased with the increasing of the molecular weight, and were lower than that of the linear poly(ε‐caprolactone). As for CDSPCL‐b‐PEGs, the Tc and Tm of the PCL blocks were significantly influenced by the PEG segments in the copolymers. Moreover, these amphiphilic star block copolymers could self‐assemble into spherical micelles with the particle size ranging from 10 to 40 nm. Their micellization behaviors were characterized by dynamic light scattering and transmission electron microscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6455–6465, 2008  相似文献   

13.
Copolyamides 2.14/piperazine.14 with variable built‐in ratios of 1,2‐ethylenediamine (1,2‐EDA) and piperazine (pip) were synthesized by solution polycondensation. The built‐in ratio of both diamine comonomers was determined with solution 13C NMR analysis. The gradual replacement of 1,2‐EDA units by cycloaliphatic pip units in polyamide 2.14 resulted in a progressively decreased melting (Tm) and crystallization temperature of the obtained copolyamides. Apparently, the Tm raising effect of the incorporation of rigid cycloaliphatic moieties is overruled by the simultaneous Tm reduction caused by a decreasing hydrogen‐bond density. Indications for cocrystallization of 2.14 and pip.14 repeating units were obtained by the thermal analysis of copolyamides 2.14/pip.14 and of a blend of both homopolyamides. A preliminary wide‐angle X‐ray diffraction study pointed to the same conclusion. Solid‐state NMR spectroscopy was used to investigate the influence of the composition on the percentage of the rigid phase of the copolyamides and delivered additional indications for cocrystallization. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2082–2094, 2003  相似文献   

14.
A series of thermoresponsive polypeptides bearing 1‐butyl, 1‐hexyl, or 1‐dodecyl side‐chains (i.e., 6a ‐ 6c ) were synthesized by copper‐mediated 1,3‐dipolar cycloaddition with high grafting efficiency (>95%) between side‐chain “clickable” polypeptide, namely poly(γ‐4‐(propargoxycarbonyl)benzyl‐L‐glutamate) ( 5 ) and 1‐azidoalkanes. 5 with different degree of polymerization (DP = 48–86) were prepared from triethylamine initiated ring‐opening polymerization of γ‐4‐(propargoxycarbonyl)benzyl‐L‐glutamic acid based N‐carboxyanhydride ( 4 ). 1H NMR, FTIR, and GPC results revealed the successful preparation of the resulting polypeptides. 6a ‐ 6c showed reversible UCST‐type phase behaviors in methanol, ethanol, and ethanol/water solvent mixtures depending on the polymer main‐chain length, alkyl side‐chain length, weight percentage of ethanol (fw) in the binary solvent, and so forth. FTIR analysis revealed the presence of the van der Waals interaction between the alkyl pendants of polypeptides and alkyl groups of alcoholic solvents. Variable‐temperature UV‐vis spectroscopy revealed that the UCST‐type phase transition temperature (Tpt) increased as polymer main‐chain length or concentration increased. In ethanol/water solvent mixtures, polypeptide with short alkyl pendant (i.e., 1‐butyl group) and short main‐chain length (DP = 41) showed the widest fw range and Tpts in the range of 61.0–71.1 °C. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3425–3435  相似文献   

15.
A series of novel mesogen‐jacketed liquid‐crystal polymers, poly[2,5‐bis(4′‐alkoxyphenyl)‐styrene] (P‐n, n = 1–11), were prepared via free‐radical polymerization of newly synthesized monomers, 2,5‐bis(4′‐alkoxyphenyl)styrene (M‐n, n = 1–11). The influence of the alkoxy tail length on the liquid‐crystalline behaviors of the monomers and the polymers was investigated with differential scanning calorimetry (DSC), thermogravimetry, polarized optical microscopy (POM), and wide‐angle X‐ray diffraction (WAXD). The monomers with n = 1–4, 9, and 11 were monotropic nematic liquid crystals. All other monomers exhibited enantiotropic nematic properties. Their melting points (Tm's) decreased first as n increased to 6, after which Tm increased slightly at longer spacer lengths. The isotropic–nematic transition temperatures decreased regularly with increasing n values in an odd–even way. The glass‐transition temperatures (Tg's) of the polymers first decreased as the tail lengths increased and then leveled off when n ≥ 7. All polymers were thermally stable and entered the mesophase at a temperature above Tg. Upon further heating, no mesophase‐to‐isotropic melt transition was observed before the polymers decomposed. WAXD studies indicated that an irreversible order–order transition for the polymers with short tails (n ≤ 5) and a reversible order–order transition for those with elongated tails (n ≥ 6) occurred at a temperature much higher than Tg. However, such a transition could not be identified by POM and could be detected by DSC only on heating scans for the polymers with long tails (n ≥ 7). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1454–1464, 2003  相似文献   

16.
The free‐radical copolymerization of m‐isopropenyl‐α,α′‐dimethylbenzyl isocyanate (TMI) and styrene was studied with 1H NMR kinetic experiments at 70 °C. Monomer conversion vs time data were used to determine the ratio kp × kt?0.5 for various comonomer mixture compositions (where kp is the propagation rate coefficient and kt is the termination rate coefficient). The ratio kp × kt?0.5 varied from 25.9 × 10?3 L0.5 mol?0.5 s?0.5 for pure styrene to 2.03 × 10?3 L0.5 mol?0.5 s?0.5 for 73 mol % TMI, indicating a significant decrease in the rate of polymerization with increasing TMI content in the reaction mixture. Traces of the individual monomer conversion versus time were used to map out the comonomer mixture composition drift up to overall monomer conversions of 35%. Within this conversion range, a slight but significant depletion of styrene in the monomer feed was observed. This depletion became more pronounced at higher levels of TMI in the initial comonomer mixture. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1064–1074, 2002  相似文献   

17.
The miscibility and thermal properties of poly(N‐phenyl‐2‐hydroxytrimethylene amine)/poly(N‐vinyl pyrrolidone) (PHA/PVP) blends were examined by using differential scanning calorimetry (DSC), high‐resolution solid‐state nuclear magnetic resonance (NMR) techniques, and thermogravimetric analysis (TGA). It was found that PHA is miscible with PVP, as shown by the existence of a single composition‐dependent glass transition temperature (Tg) in the whole composition range. The DSC results, together with the 13C crosspolarization (CP)/magic angle spinning (MAS)/high‐power dipolar decoupling (DD) spectra of the blends, revealed that there exist rather strong intermolecular interactions between PHA and PVP. The increase in hydrogen bonding and in Tg of the blends was found to broaden the line width of CH—OH carbon resonance of PHA. The measurement of the relaxation time showed that the PHA/PVP blends are homogeneous at least on the scale of 1–2 nm. The proton spin‐lattice relaxation in both the laboratory frame and the rotating frame were studied as a function of the blend composition, and it was found that blending did not appreciably affect the spectral densities of motion (sub‐Tg relaxation) in the mid‐MHz and mid‐KHz frequency ranges. Thermogravimetric analysis showed that PHA has rather good thermal stability, and the thermal stability of the blend can be further improved with increasing PVP content. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 237–245, 1999  相似文献   

18.
A functionalized cyclam was synthesized by the attachment of a polymerizable acryloyl group to one of the four nitrogens on the cyclam molecule. The polymerization of the functionalized cyclam was performed with N‐isopropylacrylamide and N,N′‐methylene bisacrylamide, and the gels obtained were studied in the presence of different transition‐metal‐ion solutions. There was a drastic difference in the phase‐transition temperature (Tc) of the poly(N‐isopropylacrylamide) (PNIPAAm)/cyclam gel in comparison with the pure PNIPAAm gel. For the described system, a Tc shift of 15 °C was obtained. The presence of functionalized cyclam increased the hydrophilicity and Tc of the aforementioned polymer gels in deionized water (at pH 6) because of the presence of protonated amino moieties. The PNIPAAm/cyclam gels showed a dependence of the swelling behavior on pH. Tc of the pure PNIPAAm gel was weakly influenced by the presence of any transition‐metal ions, such as Cu2+, Ni2+, Zn2+, and Mn2+. The addition of Cu2+ or Ni2+ to the PNIPAAm/cyclam gel reduced Tc of the polymer gel, and a shift of approximately 12 °C was observed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1594–1602, 2003  相似文献   

19.
The copolymerization of racemic β‐butyrolactone (rac‐BLMe) with racemic “allyl‐β‐butyrolactone” (rac‐BLallyl) in toluene, catalyzed by the discrete amino‐alkoxy‐bis(phenolate) yttrium‐amido complex 1 , gave new poly(β‐hydroxyalkanoate)s with unsaturated side chains. The poly(BLMeco‐BLallyl) copolymers produced have a highly syndiotactic backbone structure (Pr = 0.80–0.84) with a random enchainment of monomer units, as evidenced by 13C NMR, and high molecular weight (Mn up to 58,000 g mol?1) with a narrow polydispersity (Mw/Mn = 1.07–1.37), as determined by GPC. The comonomer incorporation (5–50 mol % rac‐BLallyl) was a linear function of the feed ratio. The pendant vinyl bond of the side‐chains in those poly(BLMeco‐BLallyl) copolymers allowed the effective introduction of hydroxy or epoxy groups via dihydroxylation, hydroboration‐oxidation or epoxidation reactions. NMR studies indicated that all of these transformations proceed in an essentially quantitative conversion and do not affect the macromolecular architecture. Some thermal properties (Tm, ΔHm, Tg) of the prepared polymers have been also evaluated. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3177–3189, 2009  相似文献   

20.
The effect of various benzenesulfonamide (BSA) plasticizers on the amorphous phase of semicrystalline polydodecamide (PA‐12) has been investigated. MonoBSAs appear as efficient glass‐transition temperature (Tg) depressors because of their miscibility with the host polyamide (PA), low glass transition, and small molecule size. PA‐12's Tg shifts from 50 to about 0 °C at 20 mol % of the most efficient molecules. Comparatively, the more bulky bisBSAs appear to induce less important absolute Tg decreases (30 K at 20 mol %), although these appear as more important when considering the polymer Tg to plasticizer Tg difference. This unexpected observation could be ascribed to both the amide‐sulfonamide interactions and the sterically generated disorder within the polyamide because of the plasticizer molecule's size. Phase‐separation behavior of BSA plasticizers within the host PA has also been investigated. Crystalline phenyl‐SO2NH2, for instance, dephased beyond 20 mol % in PA‐12, forming distinct 1–2 micrometer wide crystalline domains as a result of its high propensity to crystallize upon cooling from the melt. By contrast, slow crystallizing N,N‐dimethylBSA, which lacks any specific interaction for PA‐12, remained nevertheless dispersed at a molecular level (metastable state, no phase separation) when vitrification of the host PA‐12 amorphous phase occurred on cooling. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2208–2218, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号