首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new aromatic, tetrafunctional methacrylate monomer, 4,4′‐di(2‐hydroxy‐3‐methacryloyloxypropoxy)benzophenone, and its application to the synthesis of porous microspheres are presented. This new monomer was copolymerized with divinylbenzene in the presence of pore‐forming diluents. The properties of the obtained highly crosslinked microspheres were investigated as column packing for high‐performance liquid chromatography. Their porous structures in both dry and wet states were studied and compared with those of poly(divinylbenzene) and the less crosslinked copolymer of 2,3‐epoxypropyl methacrylate and divinylbenzene. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 7014–7026, 2006  相似文献   

2.
Synthesis and properties of the new difunctional methacrylate monomer 2‐hydroxy‐3‐methacryloyloxypropoxybenzene are presented. This monomer was applied for the synthesis of porous microspheres. It was copolymerized with trimethylolpropane trimethacrylate in the presence of two pairs of pore‐forming diluents dodecane and toluene, and n‐decanol and toluene. Influence of diluents composition on their porous structures was studied. Thermal resistance and tendency to swell in different organic diluents for a chosen sample were also determined. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6165–6174, 2008  相似文献   

3.
Poly(3,6‐silafluorene) is a typical wide band‐gap conjugated polymer with ultraviolet light emission. The blue electroluminescence from the 3,6‐silafluorene‐based copolymers via intrachain energy transfer was reported in this study. The monomer containing vinylene, anthracene, and tri‐arylamine moieties incorporated into the poly(3,6‐silafluorene) backbone can form efficient deep‐blue emitting copolymers with EL efficiency of 1.1–1.9%. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3286–3295, 2009  相似文献   

4.
In this research, thermo‐ and pH‐responsive chitosan‐based porous nanoparticles were prepared by the temperature‐dependent self assembly method. The chitosan‐graft‐poly(N‐isopropylacrylamide) (CS‐g‐PNIPAAm) copolymer solution was prepared through polymerization of N‐isopropylacrylamide (NIPAAm) monomer in the presence of chitosan (CS) solution using cerium ammounium nitrate as the initiator. Then, CS‐g‐PNIPAAm solution was diluted by deionized water and heated to 40 °C for CS‐g‐PNIPAAm self‐assembly. After that, CS‐g‐PNIPAAm assembled to form micelles in which shell layer was CS. Crosslinking agent was used to reinforce the micelle structure to form nanoparticle. The molar ratio of CS/NIPAAm in the feed mixture was changed to investigate its effect on structure, morphology, thermal‐ and pH‐responsive properties of the nanoparticles. TEM images showed that a porous structure of nanoparticles was developed. The synthesized nanoparticles carried positive charges on the surface and exhibited stimuli‐responsive properties, and their mean diameter thus could be manipulated by changing pH value and temperature of the environment. The nanoparticles showed a continuous release of the encapsulated doxycycline hyclate up to 10 days during an in‐vitro release experiment. These porous particles with environmentally sensitive properties are expected to be utilized in hydrophilic drug delivery system. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5126–5136, 2009  相似文献   

5.
A chiral monomer containing L ‐leucine as a pendant group was synthesized from methacryloyl chloride and L ‐leucine in presence of sodium hydroxide at 4 °C. The monomer was polymerized by free radical polymerization in propan‐2‐ol at 60 °C using 2,2′‐azobis isobutyronitrile (AIBN) as an initiator under nitrogen atmosphere. The polymer, poly(2‐(Methacryloyloxyamino)‐4‐methyl pentanoic acid) is thus obtained. The molecular weight of the polymer was determined to be: Mw is 6.9 × 103 and Mn is 5.6 × 103. The optical rotation of both chiral monomer and its polymer varies with the solvent polarity. The amplification of optical rotation due to transformation of monomer to polymer is associated with the ordered conformation of chiral monomer unit in the polymeric chain due to some secondary interactions like H‐bonding. The synthesized monomer and polymer exhibit intense Cotton effect at 220 nm. The conformation of the chain segments is sensitive to external stimuli, particularly the pH of the medium. In alkaline medium, the ordered chain conformation is destroyed resulting disordered random coils. The ordered coiling conformation is more firmly present on addition of HCl. The polymer exhibits swelling‐deswelling characteristics with the change of pH of the medium, which is reversible. The Cotton effect decreases linearly with the increase of temperature which is reversible on cooling. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2228–2242, 2009  相似文献   

6.
《先进技术聚合物》2018,29(7):2042-2049
Highly cross‐linked porous copolymers of 1‐vinyl‐2‐pyrrolidone with divinylbenzene were obtained in the form of microspheres by the free‐radical cross‐linking copolymerization. The porous structure of the copolymers was created by the use of adequate diluents and stabilizers. The main parameters of the porous structure were determined by nitrogen adsorption/desorption method and positronium annihilation lifetime spectroscopy. It was shown that the determined parameters strongly depend on the chosen approach.  相似文献   

7.
Highly crosslinked copolymers of 1‐vinyl‐2‐pyrrolidone (VP) were obtained in the form of microspheres by combined suspension–emulsion polymerization. The porous structure of the copolymers was created by the use of proper diluents. The main parameters of porous structure were established in the dry and wet states. Three methods: inverse size‐exclusion chromatography (ISEC), nitrogen adsorption, and small X‐ray scattering (SAXS) were used in porous structure investigations. It was shown that the determined parameters strongly depend on the chosen method and the microspheres can be used as packing materials in chromatography. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
An efficient novel method for the synthesis of a covalent molecularly imprinted polymer (MIP) highly specific to β‐estradiol have been developed. MIP prepared by both covalent and non covalent techniques, demonstrated high selectivity toward β‐estradiol. MIPs were synthesized by radical polymerization of 17‐β‐estradiol 4‐vinyl‐benzene carboxyl or sulfonyl esters used as covalent functional monomers, methacrylic acid as noncovalent functional monomer, ethylene glycol dimethacrylate as crosslinking agent, and acetonitrile as swelling and porogenic component. Almost 35% (w/w) of 17‐β‐estradiol was successfully removed from the polymer network by basic hydrolysis. The binding ability of MIP was 10.73 μg/mg MIP following removal of 17‐β‐estradiol in the 2 mg/mL β‐estradiol solution. Selective rebinding of β‐estradiol toward MIP was tested in the presence of competitive binders including estrone, 19‐nortestosterone, epiandrosterone, and cholesterol. Estrone having closest similar chemical structure to β‐estradiol exhibited only 0.6 μg/mg MIP competitive binding, being exposed to equivalent concentrations. Moreover, other competitive steroids demonstrated negligible affinity toward MIP indicating high selectivity of novel MIP system toward β‐estradiol. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5534–5542, 2009  相似文献   

9.
Catalytic oxidative polymerization of 2,2′‐dihydroxybiphenyl (DHBP) was performed by using both the Schiff base monomer‐Cu(II) complex and Schiff base polymer‐Cu(II) complex compounds as catalysts and hydrogen peroxide as oxidant, respectively. The dependence of monomer conversion and molecular weight distribution on various reaction parameters, including time, temperature, solvent as well as the amount of catalyst and oxidant were investigated. The structure of the poly‐2,2′‐dihydroxybiphenyl (PDHBP) was confirmed by UV‐vis, IR, 1H and 13C NMR spectroscopy techniques. The electrochemical and thermal properties of PDHBP were also studied. DSC data revealed that PDHBP was amorphous. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2977–2984, 2009  相似文献   

10.
To avoid organometallic catalysts in the synthesis of poly(1,5‐dioxepan‐2‐one), the enzymatic ring‐opening polymerization of 1,5‐dioxepan‐2‐one (DXO) was performed with lipase CA (derived from Candida antarctica) as a biocatalyst. A linear relationship between the number‐average molecular weight and monomer conversion was observed, and this suggested that the product molecular weight could be controlled by the stoichiometry of the reactants. The monomer consumption followed a first‐order rate law with respect to the monomer, and no chain termination occurred. Water acted as a chain initiator, but it could cause polymer hydrolysis when it exceeded an optimum level. An initial activation via the heating of the enzyme was sufficient to start the polymerization, as the monomer conversion occurred when samples were left at room temperature after an initial heating at 60 °C. A high lipase content led to a high monomer conversion as well as a high molecular weight. An increase in the monomer conversion and molecular weight was observed when the polymerization temperature was increased from 40 to 80 °C. A further increase in the polymerization temperature led to a decrease in the monomer conversion and molecular weight because of the denaturation of the enzyme at elevated temperatures. The polymerization behavior of DXO under lipase CA catalysis was compared with that of ε‐caprolactone (CL). The rate of monomer conversion of DXO was much faster than that of CL, and this may have been due to differences in their specificity toward lipase CA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4206–4216, 2005  相似文献   

11.
The monomer 5‐[(5‐ethynyl‐1‐naphthyl)ethynyl]‐N,N‐dimethylnaphthalen‐1‐amine was satisfactory obtained through the heterocoupling reaction of 5‐ethynyl‐N,N‐dimethylnaphthalen‐1‐amine and 4‐(5‐iodo‐1‐naphthyl)‐2‐methyl‐3‐butyn‐2‐ol catalyzed by a palladium–copper system, followed by acetone elimination. Poly{5‐[(5‐ethynyl‐1‐naphthyl)ethynyl]‐N,N‐dimethylnaphthalen‐1‐amine} was obtained through the reaction of the acetylene monomer with homogeneous rhodium and palladium catalyst complexes. The structure of the polymers always showed a trans–cisoidal chain configuration on the basis of IR and NMR spectra. Moreover, only for the rhodium catalyst complex in methanol was a dimeric product isolated in a very low yield, having a conjugated terminal ene–yne structure, which permitted the consideration of a metallated chain‐transfer intermediate in the polymer propagation. The mass determination of the polymers, by osmometry and gel permeation chromatography techniques, showed low average molecular weights. The kinetics of the catalyzed polymerization were analyzed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2038–2047, 2007  相似文献   

12.
A bisketal of myo‐inositol was used as a diol‐type monomer for synthesis of polyurethanes. The monomer was obtained by treatment of myo‐inositol with 1,1‐dimethoxycyclohexane in the presence of p‐toluenesulfonic acid as a catalyst. The ketalization resulted in the formation of a 5‐6‐5‐fused ring system, which endowed the diol‐type monomer with high rigidity. The diol readily reacted with diisocyanate to give the corresponding polyurethane, which exhibited excellent heat resistance due to the rigid 5‐6‐5 system in the main chain. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3956–3963  相似文献   

13.
Block copolymers of poly(glycidol)‐b‐poly(4‐vinylpyridine) were obtained by ATRP of 4‐vinylpyridine initiated by ω‐(2‐chloropropionyl) poly(glycidol) macroinitiators. By changing the monomer/macroinitiator ratio in the synthesis polymers with varied P4VP/PGl molar ratio were obtained. The obtained block copolymers showed pH sensitive solubility. It was found that the linkage of a hydrophilic poly(glycidol) block to a P4VP influenced the pKa value of P4VP. DLS measurements showed the formation of fully collapsed aggregates exceeding pH 4.7. Above this pH values the collapsed P4VP core of the aggregates was stabilized by a surrounding hydrophilic poly(glycidol) corona. The size of the aggregates depended significantly upon the composition of the block copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1782–1794, 2009  相似文献   

14.
Lanthanum isopropoxide (La(OiPr)3) has been synthesized and employed for ring‐opening polymerization of 1,4‐dioxan‐2‐one in bulk as a single‐component initiator. The influences of reaction conditions such as initiator concentration, reaction time, and reaction temperature on the polymerization were investigated. The kinetics indicated that the polymerization is first‐order with respect to the monomer concentration. The Mechanistic investigations according to 1H NMR spectrum analysis demonstrated that the polymerization of PDO proceeded through a coordination‐insertion mechanism with a rupture of the acyl‐oxygen bond of the monomer rather than the alkyl‐oxygen bond cleavage. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5214–5222, 2008  相似文献   

15.
This study applied the macromonomers and glycidyl methacrylate (GMA) to synthesize a series of the graft copolymers, poly(GMA)‐graft‐poly(Z‐L ‐lysine), and investigated the conformation of the graft copolymer. The graft copolymers were synthesized with different GMA monomer ratios (28 to 89%) and different degrees of polymerization (DP) (8 to 15) of the poly(Z‐L ‐lysine) side chain to analyze secondary structure relationships. Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), and both wide angle and small angle X‐ray scattering spectroscopy (WAXS, SAXS) were used to investigate the relationship between the microstructure and conformation of the graft copolymers and the different monomer ratios and side chain DP. In AFM images, n8‐G89 (the graft copolymer containing 89% GMA units and the macromonomer DP is 8) showed tiny and uniform rod‐like structures, and n14‐G43 (the graft copolymer containing 43% GMA units and the macromonomer DP is 14) showed uniform rod‐like structures. FTIR spectra of the graft copolymers showed that the variations of α‐helix and β‐sheet secondary structures in the graft copolymers relate to the monomer ratios of the graft copolymers. However, the X‐ray scattering patterns indicated that the graft copolymer conformations were mainly dependent on the poly(Z‐L ‐lysine) side chain length, and these results were completely in accordance with the AFM images. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4655–4669, 2009  相似文献   

16.
Radical polymerization of N‐methylacrylamide (NMAAm), N,N‐dimethylacrylamide (DMAAm), and N‐methyl‐N‐phenylacrylamide (MPhAAm) was investigated in toluene at low temperatures. Atactic, isotactic, and syndiotactic polymers were obtained by the polymerization of NMAAm, DMAAm, and MPhAAm, respectively, indicating that the stereospecificity of the radical polymerization of acrylamide derivatives depended on the N‐substituents of the monomer used. From the viewpoint of monomer structure, the origin of the stereospecificity of radical polymerization of NMAAm derivatives is discussed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6534–6539, 2009  相似文献   

17.
The free‐radical homopolymerization and copolymerization behavior of N‐(2‐methylene‐3‐butenoyl)piperidine was investigated. When the monomer was heated in bulk at 60 °C for 25 h without an initiator, about 30% of the monomer was consumed by the thermal polymerization and the Diels–Alder reaction. No such side reaction was observed when the polymerization was carried out in a benzene solution with 1 mol % 2,2′‐azobisisobutylonitrile (AIBN) as an initiator. The polymerization rate equation was found to be Rp ∝ [AIBN]0.507[M]1.04, and the overall activation energy of polymerization was calculated to be 89.5 kJ/mol. The microstructure of the resulting polymer was exclusively a 1,4‐structure that included both 1,4‐E and 1,4‐Z configurations. The copolymerizations of this monomer with styrene and/or chloroprene as comonomers were carried out in benzene solutions at 60 °C with AIBN as an initiator. In the copolymerization with styrene, the monomer reactivity ratios were r1 = 6.10 and r2 = 0.03, and the Q and e values were calculated to be 10.8 and 0.45, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1545–1552, 2003  相似文献   

18.
The monomer concentration for the cationic ring‐opening polymerization of 2‐ethyl‐2‐oxazoline in N,N‐dimethylacetamide was optimized utilizing high‐throughput experimentation methods. Detailed 1H‐NMR spectroscopic investigations were performed to understand the mechanistic aspects of the observed concentration effects. Finally, the improved polymerization concentration was applied for the synthesis of higher molecular weight (> 10,000 Da) poly(2‐ethyl‐2‐oxazoline)s. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1487–1497, 2005  相似文献   

19.
The ring‐opening polymerization of L ‐lactide initiated by single‐component rare‐earth tris(4‐tert‐butylphenolate)s was conducted. The influences of the rare‐earth elements, solvents, temperature, monomer and initiator concentrations, and reaction time on the polymerization were investigated in detail. No racemization was found from 70 to 100 °C under the examined conditions. NMR and differential scanning calorimetry measurements further confirmed that the polymerization occurred without epimerization of the monomer or polymer. A kinetic study indicated that the polymerization rate was first‐order with respect to the monomer and initiator concentrations. The overall activation energy of the ring‐opening polymerization was 79.2 kJ mol?1. 1H NMR data showed that the L ‐lactide monomer inserted into the growing chains with acyl–oxygen bond cleavage. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6209–6215, 2004  相似文献   

20.
The cationic ring‐opening polymerization of a seven‐membered cyclic monothiocarbonate, 1,3‐dioxepan‐2‐thione, produced a soluble polymer through the selective isomerization of thiocarbonyl to a carbonyl group {? [SC(C?O)O(CH2)4]n? }. The molecular weights of the polymer could be controlled by the feed ratio of the monomer to the initiators or the conversion of the monomer during the polymerization, although some termination reactions occurred after the complete consumption of the monomer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1014–1018, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号