首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Triacylglycerols were analyzed as cationized species (Li+, Na+, K+) by high-energy CID at 20 keV collisions utilizing MALDI-TOF/RTOF mass spectrometry. Precursor ions, based on [M+Li]+-adduct ions exhibited incomplete fragmentation in the high and low m/z region whereas [M+K]+-adducts did not show useful fragmentation. Only sodiated precursor ions yielded product ion spectra with structurally diagnostic product ions across the whole m/z range. The high m/z region of the CID spectra is dominated by abundant charge-remote fragmentation of the fatty acid substituents. In favorable cases also positions of double bonds or of hydroxy groups of the fatty acid alkyl chains could be determined. A-type product ions represent the end products of these charge-remote fragmentations. B- and C-type product ions yield the fatty acid composition of individual triacylglycerol species based on loss of either one neutral fatty acid or one sodium carboxylate residue, respectively. Product ions allowing fatty acid substituent positional determination were present in the low m/z range enabling identification of either the sn-1/sn-3 substituents (E-, F-, and G-type ions) or the sn-2 substituent (J-type ion). These findings were demonstrated with synthetic triacylglycerols and plant oils such as cocoa butter, olive oil, and castor bean oil. Typical features of 20 keV CID spectra of sodiated triacylglycerols obtained by MALDI-TOF/RTOF MS were an even distribution of product ions over the entire m/z range and a mass accuracy of ±0.1 to 0.2 u. One limitation of the application of this technique is mainly the insufficient precursor ion gating after MS1 (gating window at 4 u) of species separated by 2 u.  相似文献   

2.
The collision-induced dissociation (CID) spectra of glycoside–alkali metal adduct ions [M + C]+ (C = Li, Na, K and Rb) produced under fast atom bombardment (FAB) conditions are reported. The results obtained suggested that the CID spectra of the [M + C]+ ions of some flavonoid glycosides reflect the coordination structures because the CID patterns generally changed with the metal cation size. In diglycosides, the CID spectra showed that the relatively small cations Li+ and Na+ rather bind to the sugar moiety, whereas the large cations K+ and Rb+ rather bind to the aglycone moiety. In monoglycosides, the cations C+ rather bind to the aglycone moiety. It was concluded that the CID technique combined with FAB is useful for the structural elucidation of [M + C]+ ions and, in principle, the CID spectra reflect the coordination structures in the gas phase.  相似文献   

3.
Five new monoacylglycerols (MAGs) were isolated from the marine sponge Stelletta sp. by reversed-phase high-performance liquid chromatography and analyzed by positive ion fast atom bombardment mass spectrometry (FAB-MS). FAB mass spectra of these compounds produced abundant sodium-adducted molecules [M+Na]+ from a mixture of 3-nitrobenzyl alcohol and sodium iodide. The structural elucidation of these sponge MAGs was carried out by FAB tandem mass spectrometry (MS/MS). To find diagnostic ions for the characterization of the MAGs, authentic MAGs were initially analyzed by collision-induced dissociation (CID) MS/MS. The CID MS/MS of [M+Na]+ precursor ions resulted in the formation of numerous characteristic product ions via a series of dissociative processes. The product ions formed by charge-remote fragmentation (CRF) provided important information for the characterization of acyl chains substituted at the glycerol backbone, and product ions at m/z 84, 97, 113 and 139 were diagnostic for the sodiated glycerol backbone. On the basis of these fragmentation patterns, the structures of five MAGs extracted from marine sponge were elucidated. In addition, high-resolution mass measurement was performed to obtain the elemental compositions of the MAGs.  相似文献   

4.
Metal complex formation was investigated for di‐exo‐, di‐endo‐ and trans‐2,3‐ and 2,5‐disubstituted trinorbornanediols, and di‐exo‐ and di‐endo‐ 2,3‐disubstituted camphanediols using different divalent transition metals (Co2+, Ni2+, Cu2+) and electrospray ionization quadrupole ion trap mass spectrometry. Many metal‐coordinated complex ions were formed for cobalt and nickel: [2M+Met]2+, [3M+Met]2+, [M–H+Met]+, [2M–H+Met]+, [M+MetX]+, [2M+MetX]+ and [3M–H+Co]+, where M is the diol, Met is the metal used and X is the counter ion (acetate, chloride, nitrate). Copper showed the weakest formation of metal complexes with di‐exo‐2,3‐disubstituted trinorbornanediol yielding only the minor singly charged ions [M–H+Cu]+, [2M–H+Cu]+ and [2M+CuX]+. No clear differences were noted for cobalt complex formation, especially for cis‐2,3‐disubstituted isomers. However, 2,5‐disubstituted trinorbornanediols showed moderate diastereomeric differentiation because of the unidentate nature of the sterically more hindered exo‐isomer. trans‐Isomers gave rise to abundant [3M–H+Co]+ ion products, which may be considered a characteristic ion for bicyclo[221]heptane trans‐2,3‐ and trans‐2,5‐diols. To differentiate cis‐2,3‐isomers, the collision‐induced dissociation (CID) products for [3M+Co]2+, [M+CoOAc]+, [2M–H+Co]+ and [2M+CoOAc]+ cobalt complexes were investigated. The results of the CID of the monomeric and dimeric metal adduct complexes [M+CoOAc]+ and [2M–H+Co]+ were stereochemically controlled and could be used for stereochemical differentiation of the compounds investigated. In addition, the structures and relative energies of some complex ions were studied using hybrid density functional theory calculations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Positive-ion fast atom bombardment (FAB) and B/E linked scan FAB mass spectra of seven carotenoids are reported. In all cases the M ions are observed, and the [M + H]+ ions are absent in the hydrocarbons and weak in the oxygenated compounds. The usefulness of B/E linked scan FAB mass spectra to distinguish isomers and to attribute the loss of toluene from the M to an ionic fragmentation and not to a thermal process is discussed.  相似文献   

6.
A recently characterized oviposition-deterring pheromone (ODP, structure 1) of the European cherry fruit fly was used as a test case for probing the potential of tandem mass spectrometry (MS/MS) in structure elucidation as a stand-alone technique. The glycolipid-taurinate 1 was subjected to MS/MS analyses under a variety of conditions with and without preceding chemical degradation. Acidic methanolysis of 1 and subsequent in-batch derivatization (trideuterioacetylation) yielded methyl 2,3,4,6-tetrakis-O-trideuterioacetyl-glucopyranoside (2), methyl 8,15-bis-trideuterioacetoxy-palmitate (3), and taurine (4) as suitable target compounds for direct mixture analysis.Low energy collision induced dissociation (CID) on selected precursor ions (MS/MS on [M + H – CH3OH]+ and [M + H]+ produced by fast atom bombardment (FAB)) allowed direct identification of 2 and 4, respectively, by comparison with appropriate reference ions. In the case of 3, low energy CID (desorption chemical ionization (DCI) instead of FAB, MS/MS on [M + H]+) permitted deduction of gross molecular structure, but failed to provide positional detail. In sharp contrast,high energy CID of trideuterioacetylated intact 1 (FAB-MS/MS on [M – H] ions of la) clearly revealed a linear 8,15-hydroxylated palmitic acid backbone. Less certain was assignment of 15-O-glucosylation by this approach.  相似文献   

7.
In this work a systematic strategy integrating liquid chromatography/tandem mass spectrometry (LC/MS/MS) and online databases was developed to identify phosphocholines (PC) and lysophosphatidylcholines (LPC) in human red blood cells (RBCs). First of all, the neutral loss scan of 59 and the precursor ion scan of m/z 184 were performed to find out the possible lipids with phosphocholine head‐group structure in RBCs. The acquired [M+H]+ and [M+Na]+ adduct ions were then identified online using the Human Metabolome Database (HMDB) and the LIPID MAPS, which were then further confirmed by their MS/MS fragmentation. Based on the comparison of chemical structures of the detected PC and LPC with their corresponding MS/MS fragmentation pathways, several new diagnostic fragments or fragmentation pathway were found. These include, (1) the neutral losses of 183 could be used as a diagnostic fragmentation to discriminate PC and LPC; (2) product ions at m/z 104 could be used to distinguish LPC and their sn‐2 isomers; (3) fragment ions at m/z 184 are characteristic fragmentation that could be used for discrimination of sodiated ions [M+Na]+ and protonated ions [M+H]+, especially for co‐eluted PC or LPC with a molecular weight difference of 22. The structures of the above‐mentioned fragment ions were confirmed by quadrupole time‐of‐flight (Q‐TOF) MS. Furthermore, a PC and LPC focused LC/MS semi‐quantification approach was also developed and validated. This approach could be useful for future lipidomic study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Migration of sulfate groups between hydroxyl groups was identified after collision‐induced dissociation (CID) of sulfated oligosaccharides in an ion trap mass spectrometer in negative ion mode. Analysis of various sulfated oligosaccharides showed that this was a common phenomenon and was particularly prominent in sulfated oligosaccharides also containing sialic acid. It was also shown that the level of migration was increased when the sulfate was positioned on the flexible areas of the oligosaccharides not involved in the pyranose ring, such as the extra‐cyclic C‐6 carbon of hexoses or N‐acetylhexosamines, or on reduced oligosaccharide. This suggested that migration is dependent on the spatial availability of the sulfate in the ion trap during collision. It is proposed that the migration is initiated when the negatively charged ‐SO3 residue attached to the oligosaccharide precursor becomes protonated by a CID‐induced proton transfer. This is supported by the CID fragmentation of precursor ions depleted of acidic protons such as doubly charged [M – 2H]2– ions or the sodiated [M + Na – 2H] ions of oligosaccharides containing one sulfate and one sialic acid in the same molecule. Compared to the CID fragmentation of their monocharged [M – H] ions, no migration was observed in CID of proton depleted precursors. Alternative fragmentation parameters to suppress migration of sulfated oligosaccharides also showed that it was not present when sulfated oligosaccharides were fragmented by HCD (High‐Energy C‐trap Dissociation) in an Orbitrap mass spectrometer. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
N‐Boc/Fmoc/Z‐N′‐formyl‐gem‐diaminoalkyl derivatives, intermediates particularly useful in the synthesis of partially modified retro‐inverso peptides, have been characterized by both positive and negative ion electrospray ionization (ESI) ion‐trap multi‐stage mass spectrometry (MSn). The MS2 collision induced dissociation (CID) spectra of the sodium adduct of the formamides derived from the corresponding N‐Fmoc/Z‐amino acids, dipeptide and tripeptide acids show the [M + Na‐NH2CHO]+ ion, arising from the loss of formamide, as the base peak. Differently, the MS2 CID spectra of [M + Na]+ ion of all the N‐Boc derivatives yield the abundant [M + Na‐C4H8]+ and [M + Na‐Boc + H]+ ions because of the loss of isobutylene and CO2 from the Boc protecting function. Useful information on the type of amino acids and their sequence in the N‐protected dipeptidyl and tripeptidyl‐N′‐formamides is provided by MS2 and subsequent MSn experiments on the respective precursor ions. The negative ion ESI mass spectra of these oligomers show, in addition to [M‐H]?, [M + HCOO]? and [M + Cl]? ions, the presence of in‐source CID fragment ions deriving from the involvement of the N‐protecting group. Furthermore, MSn spectra of [M + Cl]? ion of N‐protected dipeptide and tripeptide derivatives show characteristic fragmentations that are useful for determining the nature of the C‐terminal gem‐diamino residue. The present paper represents an initial attempt to study the ESI‐MS behavior of these important intermediates and lays the groundwork for structural‐based studies on more complex partially modified retro‐inverso peptides. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A number of clinically significant penem β-lactams, both free acids and sodium salts, were investigated by mass-analyzed ion kinetic energy spectrometry (MIKES) following fast atom bombardment (FAB) ionization. The collisionally activated dissociation (CAD) products of [M + H] + and [M + Na]+ ions are described. Carbon dioxide loss was observed for some of the free acids, whereas a daughter ion generated by β-lactam ring cleavage was characteristic of the sodiated species. Other fragments included successive cleavages and rearrangements of the substituent side-chain, permitting complete characterization of these chains. The fragmentation pattern for both protonated and sodiated species were more clearly established by CAD MIKES than by normal FAB mass spectral analyses. A notable feature of this technique was its ability to differentiate between pairs of regioisomeric penems on the basis of their fragmentation patterns. These compounds could not be differentiated in the usual mass spectra.  相似文献   

11.
The potential of tandem mass Spectrometry (MS/MS) as a stand-alone technique in the structural analyses of an oviposition-deterring pheromone (ODP, 1) is reviewed. Two facets of the salt-like glycolipid structure of 1 were of major interest in this context: the substitution pattern of the lipid backbone (15-glucosyioxy-8-hydroxypalmitate) and, more specifically, the configurational identity of the sugar portion (glucopyra nose). Throughout this study, trideuterioacetyl derivatives of ODP (1 → pentakis(trideuterioacetyl)-ODP la) and the reference substrates were used. Probing of the sugar moiety by fast atom bombardment (FAB) and both low- and high-energy collision-induced dissociation (CID) of B2-type sugar ions surprisingly failed as a single exception within a larger number of glycosidic substrates subjected to this approach. However, electrospray ionization (ESI) of la with the formation of the sugar ions in the gas phase by ‘first-stage’ CID before mass selection circumvented this difficulty and provided an unambiguous and sensitive probe for sugar stereochemistry. When studying the ODP molecule as a whole, FAB-generated M-like ions such as [M ? H]?, [M + Na]+ and [M ? H + 2Na]+ were subjected to high-energy CID using a four-sector tandem mass spectrometer. Analyses of simple model substrates such as the 12-trideuterioacetoxystearate anion facilitated the interpretation of the distinct charge-remote fragmentation (CRF) behaviour of la. Whereas all M-like species provided complete records of the lipid portion of la and its oxygenation pattern, only the sodiated cations allowed reliable location of the individual substituents. In these latter species complementary series of ‘sequence ions’ were observed that incorporated either the taurine or the sugar terminus and thus reflected CRF for both alternatives of terminal charge fixation.  相似文献   

12.
The aim of this study was to investigate the fragmentation behavior induced by low‐energy collision‐induced dissociation (LE‐CID) of four selected antioxidants applied in lubricants, by two different types of ion trap mass spectrometers: a three‐dimensional ion trap (3D‐IT) and a linear IT (LIT) Orbitrap MS. Two sterically hindered phenols and two aromatic amines were selected as model compounds representing different antioxidant classes and were characterized by positive‐ion electrospray ionization (ESI) and LE‐CID. Various types of molecular ions (e.g. [M]+?, [M + H]+, [M + NH4]+ or [M + Na]+) were used as precursor ions generating a significant number of structurally relevant product ions. Furthermore, the phenolic compounds were analyzed by negative‐ion ESI. For both IT types applied for fragmentation, the antioxidants exhibited the same unusual LE‐CID behavior: (1) they formed stable radical product ions and (2) C? C bond cleavages of aliphatic substituents were observed and their respective cleavage sites depended on the precursor ion selected. This fragmentation provided information on the type of structural isomer usually not obtainable for branched aliphatic substituents utilizing LE‐CID. Comparing the two instruments, the main benefit of applying the LIT‐Orbitrap was direct access to elemental composition of product ions enabling unambiguous interpretation of fragmentation trees not obtainable by the 3D‐IT device (e.g. loss of isobaric neutrals). It should be emphasized that the types of product ions formed do not depend on the type of IT analyzer applied. For characterizing degradation products of antioxidants, the LIT‐Orbitrap hybrid system, allowing the determination of accurate m/z values for product ions, is the method of choice. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
In this study, we systematically investigated gas-phase fragmentation behavior of [M + nH + OH]n•+ ions formed from peptides containing intra-molecular disulfide bond. Backbone fragmentation and radical initiated neutral losses were observed as the two competing processes upon low energy collision-induced dissociation (CID). Their relative contribution was found to be affected by the charge state (n) of [M + nH + OH]n•+ ions and the means for activation, i.e., beam-type CID or ion trap CID. Radical initiated neutral losses were promoted in ion-trap CID and for lower charge states where mobile protons were limited. Beam-type CID and dissociation of higher charge states of [M + nH + OH]n•+ ions generally gave abundant backbone fragmentation, which was highly desirable for characterizing peptides containing disulfide bonds. The amount of sequence information obtained from CID of [M + nH + OH]n•+ ions was compared with that from CID of disulfide bond reduced peptides. For the 11 peptides studied herein, similar extent of sequence information was obtained from these two methods.  相似文献   

14.
A series of new synthetic tetrabenzyl N-glucosidic, N-mannosidic and N-galactosidic isomers were investigated by fast atom bombardment (FAB)/mass-analysed ion kinetic energy (MIKE) spectrometry. The [M + H]+ ions were obtained with high abundance in the FAB spectra when using 3-nitrobenzyl alcohol as the matrix. The FAB/MIKE spectra provide characteristic daughter ions fragmented from selected molecular parent ions, allowing these isomers to be differentiated. In addition, an interesting rearrangement was found from the MIKE spectra, indicating that the benzyl (Bzl) group on the sugar ring is rearranged on to the N atom of the base (R) group to form [R + Bzl + H]+ and [R+ 2Bzl]+ ions.  相似文献   

15.
Mechanisms are proposed for the formation of M+, [M + 2H]+ and [M + 3H]+ ions in the fast atom bombardment (FAB) mass spectra of 4-(2,2,6,6-tetramethyl-1-oxyl)-piperidol and its carboxylates. Free radical quenching induced by the fast atom beam has been observed. The effects of temperature on the radical quenching and of acid on the FAB mass spectra are discussed. The experiment showed that the volatile liquid samples with vapour pressures higher than that for glycerol produced M+ even-electron molecular ions, and the FAB mass spectra were similar to the corresponding electron ionization mass spectra. For the solid samples, it was found that the free radicals were quenched during the FAB process so that the mononitroxide and dinitroxide compounds produced [M + 2H]+ and [M + 3H]+ ions, respectively. Further experiments showed that the intensities and stabilities of [M + 2H]+ and [M + 3H]+ ions could be improved by addition of acids.  相似文献   

16.
Some ion-formation processes during fast atom bombardment (FAB) are discussed, especially the possibility of reactions in the gas phase. Divided (two halves) FAB probe tips were used for introducing two different samples into the source at the same time. Our results showed [M + A]+ ions (where M = crown ethers and A = alkali metal ions), can be produced, at least in part, in the gas phase when crown ethers and sources of alkali metal ion are placed on two halves of the FAB probe tip. The extent of this ion formation depends on the volatility of the crown ether and on steric factors. Cluster ions such as (M + LiCl)Li+, (2M + LiCl)Li+, [2M + K]+ and [2M + Na]+ are also observed to form in the gas phase. Unimolecular decompositions contribute to some ions detected in FAB. When the alkali ion salt and the crown ether are mixed together the probability of [M + A]+ ion formation increases significantly, regardless of the volatility of the crown ether.  相似文献   

17.
Spin‐labeled nitroxide derivatives of podophyllotoxin had better antitumor activity and less toxicity than that of the parent compounds. However, the 2‐H configurations of these spin‐labeled derivatives cannot be determined by nuclear magnetic resonance (NMR) methods. In the present paper, a high‐performance liquid chromatography‐diode array detection (HPLC‐DAD) and a high‐performance liquid chromatography‐electrospray ionization tandem mass spectrometry (HPLC‐ESI/MS/MS) method were developed and validated for the separation, identification of four pairs of diastereoisomers of spin‐labeled derivatives of podophyllotoxin at C‐2 position. In the HPLC‐ESI/MS spectra, each pair of diastereoisomers of the spin‐labeled derivatives in the mixture was directly confirmed and identified by [M+H]+ ions and ion ratios of relative abundance of [M‐ROH+H]+ (ion 397) to [M+H]+. When the [M‐ROH+H]+ ions (at m/z 397) were selected as the precursor ions to perform the MS/MS product ion scan. The product ions at m/z 313, 282, and 229 were the common diagnostic ions. The ion ratios of relative abundance of the [M‐ROH+H]+ (ion 397) to [M+H]+, [A+H]+ (ion 313) to [M‐ROH+H]+, [A+H‐OCH3]+ (ion 282) to [M‐ROH+H]+ and [M‐ROH‐ArH+H]+ (ion 229) to [M‐ROH+H]+ of each pair of diastereoisomers of the derivatives specifically exhibited a stereochemical effect. Thus, by using identical chromatographic conditions, the combination of DAD and MS/MS data permitted the separation and identification of the four pairs of diastereoisomers of spin‐labeled derivatives of podophyllotoxin at C‐2 in the mixture.  相似文献   

18.
Positive-ion fast atom bombardment (FAB) mass spectra of flavonol and steroid glycosides with sodium chloride added showed well known characteristic features; of the appearance of [M + Na]+ peaks, disappearance of [M + H]+ peaks and a significant decrease in the peak heights of fragment ions. Compared with the features in the FAB mass spectra of crown ethers with addition of salt, and above features suggest a complexation between Na+ and the glycosides in matrix solution. The B/E-constant linked scanning technique was used to obtain structural information of the [M + Na]+ ion of the glycosides. The B/E spectra gave the daughter-ion peaks, suggesting that coordination of Na+ with the biosides and triosides occurs at the sugar moiety, whereas the coordination with the monoglycosides occurs at the aglycone moiety, except for monoglycosides in which the aglycone moiety does not contain significant oxygen functional groups such as OH and CO.  相似文献   

19.
Herein we report a reversed‐phase high‐performance liquid chromatography tandem mass spectrometry (RP‐HPLC/MS/MS) method for the analysis of positional isomers of triacylglycerols (TAGs) in vegetable oils. The fragmentation behavior of [M + X]+ ions (X = NH4, Li, Na or Ag) was studied on a quadrupole‐time‐of‐flight (Q‐TOF) mass spectrometer under low‐energy collision‐induced dissociation (CID) conditions. Mass spectra that were dependent on the X+ ion and the nature and position of the acyl substituents were observed for four pairs of 'AAB/ABA'‐type TAGs, namely PPO/POP, OOP/OPO, LLO/LOL and OOL/OLO (where P is 16:0, palmitic acid; O is 18:1, oleic acid; and L is 18:2, linoleic acid). For the majority of [M + X]+ adducts, the loss of the fatty acid in the outer positions (sn‐1 or sn‐3) was favored over the loss in the central position (sn‐2), which enabled the determination of the fractional abundance of the isomers. Ratios of the intensity of fragment ions at various AAB/ABA compositions produced linear calibration curves with positive slopes, comparable to those obtained traditionally by ESI‐MS/MS of [M + NH4]+ adducts. The only exceptions were the [M + Ag]+ adducts of the PPO/POP system, which produced calibration curves with negative slopes. Sodium adducts provided the most consistent level of isomeric discrimination for the TAGs studied and also offered the most convenience in that they required no additive to the mobile phase. Therefore, calibration curve data derived from [M + Na]+ adducts were applied to the quantification of TAG regioisomers in sunflower and olive oils. The regiospecific analysis showed that palmitic acid was typically located at positions sn‐1 or sn‐3, whereas unsaturated fatty acids, oleic and linoleic acids were mostly found at the sn‐2 position. Copyright © 2010 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

20.
Fast atom bombardment mass spectrometry in the positive mode was used for the characterization of sodiated glycerol phosphatidylcholines. The relative abundance (RA) of the protonated species is similar to the RA of the sodiated molecular species. The sodiated fragment ion, [M + Na - 59](+), corresponding to the loss of trimethylamine, and other sodiated fragment ions, were also observed. The decomposition of the sodiated molecule is very similar for all the studied glycerol phosphatidylcholines, in which the most abundant ion corresponds to a neutral loss of 59 Da. Upon collision-induced dissociation (CID) of the [M + Na](+) ion informative ions are formed by the losses of the fatty acids in the sn-1 and sn-2 positions. Other major fragment ions of the sodiated molecule result from loss of non-sodiated and sodiated choline phosphate, [M + Na - 183](+), [M + Na - 184](+.) and [M + Na - 205](+), respectively. The main CID fragmentation pathway of the [M + Na - 59](+) ion yields the [M + Na - 183](+) ion, also observed in the CID spectra of the [M + Na](+) molecular ion. Other major fragment ions are [M + Na - 205](+) and the fragment ion at m/z 147. Collisional activation of [M + Na - 205](+) results in charge site remote fragmentation of both fatty acid alkyl chains. The terminal ions of these series of charge remote fragmentations result from loss of part of the R(1) or R(2) alkyl chain. Other major informative ions correspond to acylium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号