首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A series of novel, cycloaliphatic, cationically photopolymerizable epoxide monomers bearing benzyl ether groups were prepared. These monomers display a considerable enhancement in the rate of their cationic ring‐opening polymerizations in comparison with monomers that do not contain such groups. In this article, a synergistic free‐radical mechanism is proposed that accounts for this effect, and supporting evidence is offered for its verification. During UV irradiation of an onium salt cationic photoinitiator, the aryl radicals that are generated abstract labile benzyl hydrogens present in such monomers to generate the corresponding carbon‐centered radicals. Subsequently, these radicals are oxidized to benzyl carbocations by the onium salt via a nonphotochemical chain process. The observed increase in the rate and extent of the cationic ring‐opening polymerization of the epoxide monomers is due to the aforementioned mechanism, which effectively increases the number of reactive cationic species present during polymerization. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3578–3592, 2001  相似文献   

2.
The synthesis of a series of novel cationically photopolymerizable epoxide monomers bearing benzyl, allyl, and propargyl acetal and ether groups that can stabilize free radicals was carried out. These monomers display enhanced reactivity in cationic photopolymerization in the presence of certain onium salt photoinitiators. Specifically, this article describes schemes for the synthesis of cycloaliphatic epoxy monomers bearing free‐radical stabilizing groups. During UV irradiation of an onium salt cationic photoinitiator, the aryl radicals that are generated abstract labile protons present in such monomers to generate the corresponding carbon‐centered radicals. Subsequently, these radicals can interact with the onium salt by a redox mechanism to induce the decomposition of these salts. The overall result is that additional cationic species are generated by this mechanism that increase the rate and extent of the cationic ring‐opening polymerization of the epoxide monomer. An investigation of the photopolymerizations of the monomers prepared during this work was carried out using Fourier transform real‐time infrared spectroscopy, and conclusions were drawn with respect to the relationship between their structures and reactivity. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2385–2395, 2001  相似文献   

3.
Starting with nopol [(R)‐(−)‐2‐(2′‐hydroxyethyl)‐6,6‐dimethyl‐8‐oxatricyclo[3.1.1.12,3]octane, I] as a substrate, two new, interesting monomers, allyl nopol ether epoxide III and nopol 1‐propenyl ether epoxide IV, were prepared. The photoinitiated cationic polymerizations of these two monomers as well as several other model compounds were studied using real‐time infrared spectroscopy. Surprisingly, the rates of epoxide ring‐opening polymerization of both monomers were enhanced as compared to those of the model compounds. Two different mechanisms which involve the free radical induced decomposition of the diaryliodonium salt photoinitiator were proposed to explain the rate acceleration effects. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1199–1209, 1999  相似文献   

4.
A kinetic study was conducted of the independent photoinitiated cationic polymerization of a number of epoxide monomers and mixtures of these monomers with N‐vinylcarbazole. The results show that these two different classes of monomers undergo complex synergistic interactions with one another during polymerization. It was demonstrated that N‐vinylcarbazole as well as other carbazoles are efficient photosensitizers for the photolysis of both diaryliodonium and triarylsulfonium salt photoinitiators. In the presence of large amounts of N‐vinylcarbazole, the rates of the cationic ring‐opening photopolymerization of epoxides are markedly accelerated. This effect has been ascribed to a photoinitiated free‐radical chain reaction that results in the oxidation of monomeric and polymeric N‐vinylcarbazole radicals by the onium salt photoinitiators to generate cations. These cations can initiate the ring‐opening polymerization of the epoxides, leading to the production of copolymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3697–3709, 2000  相似文献   

5.
New systems for the visible‐light‐induced polymerization of cationic resins working through a free‐radical‐promoted process are presented. They are based on a photoinitiator (camphorquinone, isopropylthioxanthone, Eosin), a silane, and a diphenyl iodonium salt, the new compound being the silane. The overall efficiency is strongly affected by the silane structure. The rates of polymerization and final percent conversion are noticeably higher than those obtained in the presence of already studied reference systems. Moreover, contrary to previously investigated free‐radical‐promoted cationic polymerizations, oxygen does not inhibit the process and an unusual enhancement of the polymerization kinetics is found in aerated conditions: such an observation seems to have never been reported so far. The excited state processes and the role of oxygen as revealed by laser flash photolysis are discussed. The particular behavior of the silyl radicals is outlined. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2008–2014, 2008  相似文献   

6.
The addition of sulfides has a marked effect on the rates of onium salt induced photoinitiated cationic ring‐opening polymerizations of epoxide monomers. Various behaviors have been observed that depend on the structure of the sulfide. Dialkyl sulfides strongly inhibit the photopolymerizations of these monomers, whereas diaryl sulfides have a retarding effect on the photopolymerizations. Real‐time infrared spectroscopy and optical pyrometry have been employed as analytical methods to probe the kinetic effects of the addition of a variety of sulfides on cationic epoxide ring‐opening photopolymerizations. A mechanism is proposed that involves the formation of sulfonium salts as intermediates. The observations made in this study have important implications for cationic photopolymerizations in general and for photoinitiated cationic ring‐opening polymerizations of epoxides in particular. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2504–2519, 2005  相似文献   

7.
Novel thioxanthone (TX) derivatives are used as versatile photoinitiators upon visible light‐emitting diode (LED; e.g., 405, 425, and 450 nm) exposure. The mechanisms for the photochemical generation of reactive species (i.e., cations and free radicals) produced from photoinitiating systems based on the photoinitiator and an iodonium salt, tris(trimethylsilyl)silane, or an amine, were studied by UV–vis spectroscopy, fluorescence, cyclic voltammetry, steady‐state photolysis, and electron spin resonance spin‐trapping techniques. The reactive species are particularly efficient for cationic, free radical, hybrid, and thiol‐ene photopolymerizations upon LED exposure. The optimized photoinitiating systems exhibit higher efficiency than those of reference systems (i.e., isopropyl TX‐based photoinitiating systems), especially in the visible range. According to their beneficial features, these photoinitiating systems have considerable potential in photocuring applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 4037–4045  相似文献   

8.
Herein is described the development of a three-component photoinitiator system that employs the free radical promoted decomposition of diaryliodonium salts for the visible light induced cationic polymerization of epoxides. A long wavelength, titanium-complex free radical photoinitiator is used to generate radicals that abstract hydrogen atoms from benzyl alcohol synergists. The resulting benzyl radical species efficiently reduce diaryliodonium salts thereby generating oxycarbenium ions that spontaneously fragment to form the corresponding aldehyde and a Br?nsted superacid. The superacid subsequently initiates the cationic ring-opening polymerization of a wide variety of epoxide monomers.  相似文献   

9.
Several new epoxide monomers based on dicyclopentadiene (DCPD) were prepared using straightforward reaction chemistry. Those monomer-bearing groups in addition to the epoxy moiety, which can stabilize free radicals, display a pronounced acceleration of the rate of cationic ring-opening polymerization in the presence of diaryliodonium salt photoinitiators. Mechanistic studies conducted with the aid of model compounds have shown that the apparent rate acceleration is due to the free radical chain-induced decomposition of the photoinitiator. One of the chain carriers in this reaction involves a monomer-derived free radical. Also prepared was dicyclopentadiene monomer (V) bearing polymerizable epoxide and 1-propenyl ether groups in the same molecule. The functional groups in V appear to undergo independent vinyl and epoxide ring-opening polymerization. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3427–3440, 1999  相似文献   

10.
The irradiation of hybrid photopolymer systems consisting of a free radically polymerizable multifunctional acrylate monomer and a cationically polymerizable epoxide or oxetane monomer was conducted under conditions where only the free radical polymerization takes place. This results in the formation of a free‐standing polyacrylate network film containing quiescent oxonium ions along with the unreacted cyclic ether monomer. The subsequent application of a point source of heat to the film ignites a cationic ring‐opening frontal polymerization that emanates from that site and propagates to all portions of the irradiated sample. This article examines the impact of various molecular structural and experimental parameters on these novel hybrid frontal polymerizations that produce interpenetrating network polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4331–4340, 2007  相似文献   

11.
An investigation of the photoactivated cationic ring‐opening frontal polymerizations of a series of alkyl glycidyl ethers was carried out with the aid of a novel technique, optical pyrometry. With this technique, the effects of various experimental parameters, such as the photoinitiator type and concentration, as well as the effects of the monomer structure on the frontal behavior of these monomers were examined. Upon irradiation with UV light, the photopolymerizations of many alkyl glycidyl ethers displayed a prominent induction period at room temperature as the result of the formation of long‐lived, relatively stable secondary oxonium ions. The input of only a small amount of thermal activation energy was required to induce the further reaction of these species with the consequent autoaccelerated exothermic ring‐opening polymerization. Photoactivated frontal polymerizations were observed for both mono‐ and polyfunctional alkyl glycidyl ether monomers. The ability of monomers to exhibit frontal behavior was found to be related to their ability to stabilize the secondary oxonium ion intermediates through hydrogen‐bonding effects. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3036–3052, 2006  相似文献   

12.
Limonene 1,2‐oxide (LMO) and α‐pinene oxide (α‐PO) are two high reactivity biorenewable monomers that undergo facile photoinitiated cationic ring‐opening polymerizations using both diaryliodonium salt and triarylsufonium salt photoinitiators. Comparative studies showed that α‐PO is more reactive than LMO, and this is because it undergoes a simultaneous double ring‐opening reaction involving both the epoxide group and the cyclobutane ring. It was also observed that α‐PO also undergoes more undesirable side reactions than LMO. The greatest utility of these two monomers is projected to be as reactive diluents in crosslinking photocopolymerizations with multifunctional epoxide and oxetane monomers. Prototype copolymerization studies with several difunctional monomers showed that LMO and α‐PO were effective in increasing the reaction rates and shortening the induction periods of photopolymerizations of these monomers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
Studies of the onium salt photoinitiated cationic ring‐opening polymerizations of various 3,3‐disubstituted oxetane monomers have been conducted with real‐time infrared spectroscopy and optical pyrometry. The polymerizations of these monomers are typified by an extended induction period that has been attributed to the presence of a long‐lived tertiary oxonium ion intermediate formed by the reaction of the initially formed secondary oxonium ion with the cyclic ether monomer. Because the extended induction period in the photopolymerization of these monomers renders oxetane monomers of limited value for many applications, methods have been sought for its minimization or elimination. Three general methods have been found effective in markedly shortening the induction period: (1) carrying out the photopolymerizations at higher temperatures, (2) copolymerizing with more reactive epoxide monomers, and (3) using free‐radical photoinitiators as synergists. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3205–3220, 2005  相似文献   

14.
A block copolymer of cyclohexene oxide (CHO) and styrene (St) was prepared by using bifunctional visible light photoinitiator dibenzoyldiethylgermane (DBDEG) via a two‐step procedure. The bifunctionality of the photoinitiator pertains to the sequential photodecomposition of DBDEG through acyl germane bonds. In the first step, photoinitiated free radical promoted cationic polymerization of CHO using DBDEG in the presence of diphenyliodonium hexafluorophosphate (Ph2I+PF) was carried out to yield polymers with photoactive monobenzoyl germane end groups. These poly(cyclohexene oxide) (PCHO) prepolymers were used to induce photoinitiated free radical polymerization of styrene (St) resulting in the formation of poly(cyclohexene oxide‐block‐styrene) (P(CHO‐b‐St)). Successful blocking has been confirmed by a strong change in the molecular weight of the prepolymer and the block copolymer as well as NMR, IR, and DSC spectral measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4793–4799, 2009  相似文献   

15.
The cations and radicals produced in aminothiazonaphthalic anhydride derivatives (ATNAs) combined with an iodonium salt, N‐vinylcarbazole, amine, or chloro triazine initiate the ring‐opening cationic polymerization of epoxides and the free radical polymerization of acrylates under LEDs at 405 or 455 nm. The photoinitiating ability of these novel photoinitiating systems is higher than that of the well‐known camphorquinone‐based systems. An example of the high reactivity of the new proposed photoinitiator is also provided in resins for 3D‐printing using a LED projector@405 nm. The chemical mechanisms are investigated by steady‐state photolysis, cyclic voltammetry, fluorescence, laser flash photolysis, and electron spin resonance spin‐trapping techniques. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1189–1196  相似文献   

16.
A series of epoxy alcohols were prepared by simple, straightforward methods. These compounds were very reactive monomers that polymerized rapidly on UV irradiation in the presence of cationic photoinitiators. The kinetics of the cationic photopolymerization of these monomers were studied with diaryliodonium salt photoinitiators and real‐time IR spectroscopy. The rate of epoxide ring‐opening polymerization was enhanced markedly by the presence of the hydroxy group. Using model compounds, the monomers were shown to polymerize via an activated monomer mechanism. Simple epoxy alcohols polymerized to give polymers with a hyperbranched structure. The novel monomers also were observed to accelerate the rate of the photopolymerization of mono‐ and multifunctional epoxides. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 389–401, 2000  相似文献   

17.
Oligo(spiroorthocarbonate)s 1 , which were synthesized by the polycondensation of pentaerythritol derivatives with tetraethylorthocarbonate, were employed as comonomers in the cationic polymerization of epoxide initiated by sulfonium salt. In the copolymerization, the spiroorthocarbonate moiety of 1 underwent double ring‐opening reaction, leading to the efficient diminution of the volume shrinkage upon the copolymerization. Thermal properties of the resulting networked polymers were evaluated by TGA. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1564–1568  相似文献   

18.
A 1,3‐benzodioxole derivative of naphthodioxinone, namely 2‐(benzo[d][1,3]dioxol‐5‐yl)‐9‐hydroxy‐2‐phenyl‐4H‐naphtho[2,3‐d][1,3]dioxin‐4‐one was synthesized and characterized. Its capability to act as caged one‐component Type II photoinitiator for free radical polymerization was examined. Upon irradiation, this photoinitiator releases 5‐benzoyl‐1,3‐benzodioxole possessing both benzophenone and 1,3‐dioxole groups in the structure as light absorbing and hydrogen donating sites, respectively. Subsequent photoexcitation of the benzophenone chromophore followed by hydrogen abstraction generates radicals capable of initiating free radical polymerization of appropriate monomers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Free‐radical/cationic hybrid photopolymerizations of acrylates and epoxides were initiated using a three‐component initiator system comprised of camphorquinone as the photosensitizer, an amine as the electron donor, and a diaryliodonium salt. Thermodynamic considerations revealed that the oxidation potential of the electron donor must be less than 1.34 V relative to SCE for electron transfer with the photoexcited camphorquinone to take place. This electron transfer leads to the production of the active centers for the hybrid polymerization (two radicals and a cation). Further investigation revealed that only a subset of electron donors that meet the oxidation potential requirement resulted in polymerization of the epoxide monomer; therefore, a second requirement for the electron donor (pKb higher than 8) was established. Experiments performed using a combination of electron donors revealed that the onset of the hybrid system's cationic polymerization can be advanced or delayed by controlling the concentration and composition of the electron donor(s). These studies demonstrate that a single three‐component initiator system can be used to initiate and chemically control the sequential curing properties of a free‐radical/cationic hybrid photopolymerization and is a viable alternative to separate photoinitiators for each type of polymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1747–1756, 2005  相似文献   

20.
The tendencies of ring‐opening processes in radical ring‐opening polymerizations were evaluated by AM1 and PM3 semi‐empirical calculations and 6‐31G*‐level calculations based on the density functional theory (DFT) B3LYP models. Sixteen cyclic monomers bearing vinyl or exomethylene groups were categorized into ring‐opening and no‐ring‐opening monomers by the evaluation of the differences of the internal energies and the lengths of the cleaving bonds between the ground states of the initial radicals and the activated states in the ring‐opening processes. Although the semi‐empirical calculations not parameterized to radical reactions resulted in the moderate categorization of the ring‐opening monomers, the DFT calculation clearly distinguished the ring‐opening and no‐ring‐opening monomers. The ring‐opening tendencies were also evaluated with the changes in the internal energies throughout the ring‐opening processes, but this method could not group the ring‐opening and no‐ring‐opening monomers clearly. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2827–2834, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号