首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interface is an important microstructure for advanced polymer‐matrix composite. The composite interface is the bridge and the link for stress transferring between the fiber and the matrix resin. In this work, oxygen plasma treatment was used for modification of aramid fiber surface. The effects of plasma treatment power on interlaminar shear strength of composite were evaluated by short‐beam shear test. The morphologies of both the aramid fiber surface and its composite interface fracture were observed by SEM. The chemical structure and surface chemical composition of the plasma‐treated and separated fibers were analyzed by Fourier transform infrared (FTIR) and XPS, respectively. The results showed that the interlaminar shear strength of composite was enhanced by 33% with plasma treatment power of 200 W. The FTIR and XPS results indicated that the active functional groups were introduced onto the aramid fiber surface by plasma treatment forming chemical bonds with the poly(phthalazinone ether sulfone ketone) resin. The SEM results proved that the aramid fiber surface was roughened by plasma treatment enhancing the mechanical bond with the poly(phthalazinone ether sulfone ketone) resin. The composite rupture occurred from the composite interface to the fiber or the matrix resin. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
New hydrophobic poly(phthalazinone ether sulfone ketone) (PPESK) hollow fiber composite membranes were obtained by surface-coated modification method.  相似文献   

3.
New hydrophobic poly(phthalazinone ether sulfone ketone) (PPESK) hollow fiber composite membranes were obtained by surface-coated modification method.  相似文献   

4.
New hydrophobic poly(phthalazinone ether sulfone ketone) (PPESK) hollow fiber composite membranes coated with silicone rubber and with sol–gel polytrifluoropropylsiloxane were obtained by surface-coated modification method. The effects of coating time, coating temperature and the concentration of silicone rubber solution on the vacuum membrane distillation (VMD) properties of silicone rubber coated membranes were investigated. It was found that high water permeate flux could be gotten in low temperature and low concentration of silicone rubber solution. When the coating temperature is 60 °C, the coating time is 9 h and the concentration of silicone rubber solution is 5 g L−1 the water permeate flux of the silicone rubber coated membrane is 3.5 L m−2 h−1. The prepolymerization time influence the performance of polytrifluoropropylsiloxane coated membranes, and higher prepolymerization time decrease the water permeate flux of the membrane. The water permeate flux and the salt rejection was 3.7 L m−2 h−1 and 94.6%, respectively in 30 min prepolymerization period. The VMD performances of two composite membranes during long-term operation were studied, and the results indicated that the VMD performances of two composite membranes are quite stable. The salt rejection of silicone rubber coated membrane decreased from 99 to 95% and the water permeate flux fluctuated between 2.0 and 2.5 L m−2 h−1. The salt rejection of polytrifluoropropylsiloxane coated membrane decreased from 98 to 94% and the water permeate flux fluctuated in 1 L m−2 h−1 range.  相似文献   

5.
Surfaces of poly(vinyl methyl ether) (PVME), poly(vinyl methyl ketone) (PVMK), and poly(methyl methacrylate) (PMMA) were covered with different thicknesses of nickel with a metal‐vapor‐condensation method, and the metal–polymer interfaces were analyzed by X‐ray photoelectron spectroscopy. In the very first steps of the metalization, it was found that a systematic degradation of the polymer surface occurs through CO or CO2 losses, depending on the polymer functionalities. Then, at the interface with the polymer, the condensed metal reacts by oxidization with the oxygen atoms that are still available after the surface degradation. Nickel oxide is then formed at the interface, whatever the nature of the initial polymer functional group. These new oxide species are not chemically bonded to the polymer structure, and their formation is not affected by the type of bond existing between oxygen and carbon atoms in the original polymer. Finally, the accumulation of metal on the substrate induces an amorphization of the polymer carbon structure because thermal energy is transferred from the metal coating to the polymer. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 82–94, 2002  相似文献   

6.
Chloromethylated poly(phthalazinone ether sulfone ketone) (CMPPESK) was prepared from poly(phthalazinone ether sulfone ketone) (PPESK) using chloromethyl octyl ethers (CMOE) with lower toxicity as chloromethylated regent.CMPPESK was soluble in N-methyl-2-pyrrolidone (NMP),N,N-dimethylacetamide (DMAc) and chloroform.Quatemized poly(phthalazinone ether sulfone ketone) (QAPPESK) was prepared from CMPPESK by quaternization.QAPPESK had excellent solvent resistance, which was only partly soluble in sulfuric acid (98%) and swollen in N,N-dimethylformamide (DMF).The vanadium redox flow battery (V-RFB) using QAPPESK anion-exchange membrane had better performance with 88.3% of overall energy efficiency.  相似文献   

7.
The interface of fibrous composites is a key factor to the whole properties of the composites. In this study, the effects of air dielectric barrier discharge (DBD) plasma discharge power density on surface properties of poly(p‐phenylene benzobisoxazole) (PBO) fiber and the interfacial adhesion of PBO fiber reinforced poly(phthalazinone ether sulfone ketone) (PPESK) composite were investigated by several characterization methods, including XPS, SEM, signal fiber tensile strength, interlaminar shear strength, and water absorption. After the air DBD plasma treatment at a power density of 41.4 W/cm3, XPS analysis showed that some polar functional groups were introduced on the PBO fiber surface, especially the emergence of a new oxygen‐containing group (?O–C = O group). SEM observations revealed that the air DBD plasma treatment had a great influence on surface morphologies of the PBO fiber, while the signal fiber tensile strength results showed only a small decline of 5.9% for the plasma‐treated fiber. Meanwhile, interlaminar shear strength value of PBO/PPESK composite was increased to 44.71 MPa by 34.5% and water absorption of the composite decreased from 0.46% for the untreated specimen to 0.27%. The results showed that the air DBD plasma treatment can effectively improve the properties of the PBO fiber surface and the PBO/PPESK composite interface. Results obtained from the above analyses also showed that both the fiber surface and the composite interface performance would be reduced when an undue plasma discharge power density was applied. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The aim of this general study is to determine the physicochemical characteristics and mechanical properties of carbon fiber–PEEK interfaces. In the first part, the dispersive component of the surface energy and the electron acceptor–donor (acid–base) characteristics of PEEK polymer and different types of untreated and surface-treated carbon fibers are determined by means of inverse gas–solid chromatography at infinite dilution. It appears, in particular, that the acid–base surface properties of PEEK and, consequently, the orientation of macromolecules near the surface, depend on the processing of this polymer. Moreover, according to previous work, an estimation of the adhesion energy, corresponding to physical interactions (London and acid–base interactions) at carbon fiber–PEEK interfaces is proposed. Whatever the surface characteristics of PEEK, the highest level of carbon fiber–PEEK adhesion is achieved in systems involving oxidized or sized carbon fibers.  相似文献   

9.
Aging behavior of poly(p‐phenylene benzobisoxazole) (PBO) fibers and PBO‐fiber‐reinforced poly(phthalazinone ether sulfone ketone) (PPESK) composites after oxygen plasma treatment was investigated. Surface chemical composition, surface roughness and surface morphologies of oxygen‐plasma‐treated PBO fibers before and after aging in air for 1, 3, 5 and 10 days were analyzed by XPS and atomic force microscopy (AFM). The effects of aging on the material were examined by interlaminar shear strength (ILSS) and water absorption measurements. The results indicate that the major aging behavior of the fibers and the composite appeared in the first few days after oxygen plasma treatment, whereas minor aging effects were observed with prolonged aging. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
11.
The effect of air oxidation and ozone surface treatment of carbon fibers (CF) on tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites under oil‐lubricated condition was investigated. Experimental results revealed that ozone treated CF reinforced PTFE (CF–PTFE) composite had the lowest friction coefficient and wear under various applied loads and sliding speeds compared with untreated and air‐oxidated composites. X‐ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that, after ozone treatment, oxygen concentration was obviously increased, and the amount of oxygen‐containing groups on CF surfaces was largely increased. The increase in the amount of oxygen‐containing groups enhanced interfacial adhesion between CF and PTFE matrix. With strong interfacial adhesion of the composite, stress could be effectively transmitted to carbon fibers; carbon fibers were strongly bonded with PTFE matrix and large scale rubbing‐off of PTFE was prevented, therefore, the tribological properties of the composite were improved. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, the effect of coupling agent surface treatment of wood fiber on tensile and tribological property of wood fiber‐reinforced thermoplastic polyimide (PI) composites was experimentally investigated. Experimental results revealed that coupling agent surface treatment could effectively improve the interfacial adhesion between wood fiber and PI matrix. Compared with the untreated wood fiber/PI composite, the coupling agent‐treated composite had better interfacial adhesion. The fracture surfaces and worn surface of samples were investigated by scanning electronic microscopy to analyze the effects of surface treatment methods.  相似文献   

13.
In the second part of this general study, the carbon fiber–PEEK interfacial shear strength is measured by means of a fragmentation test on single-fiber composites. Different thermal treatments (continuous cooling from the melt, isothermal treatments and long melting temperature time) are applied to these model composites prior to testing. The results are systematically compared with the previously determined reversible work of adhesion between carbon fiber and PEEK. It is shown that physical interactions at the interface determine, to a large extent, the magnitude of the interfacial shear strength between both materials. However, it appears that the magnitude of the stress transfer from the matrix to the fiber is affected either by the existence of an interfacial layer or by a preferential orientation of the polymer chains near the fiber surface. The results obtained on systems that have been subjected to isothermal treatments (isothermal crystallization of PEEK) seem to confirm the existence of a transcrystalline interphase, the properties of which are dependent upon the crystallization rate of the matrix and the interfacial adhesion energy.  相似文献   

14.
Non‐thermal non‐equilibrium oxidative air 40‐kHz frequency, 13.56‐MHz radiofrequency and 2.46‐GHz microwave discharge plasma treatment were used for modifying low‐density polyethylene foils. The untreated and treated samples were chemically characterised by X‐ray photoelectron spectroscopy. In order to estimate the extent of the plasma sources at distinct treatment times, surface charge and energy were determined by zeta potential (ζ) and surface tension measurements. In addition, the isoelectric points (IEPs) of the studied samples were ascertained, and surface property variations were appraised by ageing time. The overall outcome indicated that ζ‐potential and surface energy progressively changed after each treatment, as well as the influences of ageing on surface features, the IEP shifting to lower pH values and how all of these changes are associated with the new surface chemistry. This contribution seeks to shed light on topics related to polymer science and plasma‐based strategies for surface modification. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, novel poly(phthalazione ether sulfone ketone) (PPESK) and its composites reinforced with carbon fibers (CFs) were prepared, and their tribological behaviors in pure and sea water were comparatively investigated. Affected by the noncoplanar twisted aromatic structure in the molecular skeleton, the aggregation of the macromolecular chain in PPESK was amorphous, resulting in very high water absorption of PPESK matrix. The invading water molecules led to a sharp decrease in the hardness of PPESK surface, resulting in very high wear rate of PPESK in water. Although CF/PPESK composites had higher water absorption than pure PPESK, their wear processes in water were no longer dominated by high water absorption but by the load‐carrying effect of CFs, ascribed to the good CF/PPESK interfacial adhesion. Therefore, CF/PPESK composites exhibited very low wear rates in the order of 10?7 mm3/Nm in water, which decreased with the CF content increasing until the content of CFs reached 50%. The results revealed that the most critical factor determining the wear behavior of a fiber‐reinforced polymer composite sliding in water is the fiber/matrix interface but not the water absorption of the polymer matrix. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Anionically polymerized poly(α-deuterostyrene) and poly(β-deuterostyrene-b-2-vinylpyridine) (DSVP), selectively deuterated on the styrene backbone, were studied using deuterium wide-line NMR in bulk and adsorbed on silica and alumina. Changes in the segmental dynamics of the bulk and adsorbed polymers were inferred via changes in the NMR line shape with temperature. The DSVP bulk sample, which consisted of micellar aggregrates with a 2-vinylpyridine core, was more rigid than the homopolystyrene of a similar molecular weight. A significant change in mobility occurred at 20°C higher in the DSVP bulk sample than it did in homopolystyrene. The DSVP-adsorbed sample showed more restrictive mobility than bulk DSVP. The spectra of the adsorbed samples contained “rigid” Pake patterns with considerable intensity at temperatures where the collapse of the Pake pattern for the DSVP bulk sample was observed. DSVP bound to the silica surface was found to have a mobility similar to the same copolymer on alumina. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1609–1616, 1998  相似文献   

17.
Surface modification of argon‐plasma‐pretreated poly(tetrafluoroethylene) (PTFE) film via UV‐induced graft copolymerization with glycidyl methacrylate (GMA) was carried out first. Reactive adsorption of γ‐aminopropyltriethoxysilane (APS) onto the GMA graft‐copolymerized PTFE (GMA‐g‐PTFE) film surface was performed by the simple immersion of the film in the APS solution. The adsorption process was studied as a function of the APS concentration, the immersion time of the graft‐modified PTFE film in the APS solution, and the washing protocol. The chemical composition and morphology of the silane‐modified surfaces were characterized by X‐ray photoelectron spectroscopy and atomic force microscopy, respectively. The performance of the silane‐modified PTFE surface in adhesion promotion was investigated. The T‐peel adhesion strength of the evaporated Cu on the PTFE film with the reactively adsorbed organosilane increased significantly to about 12.5 N/cm. This adhesion strength was more than twice that of the assembly involving evaporated Cu on the GMA‐g‐PTFE film and about 10 times that of the assembly involving evaporated Cu on the Ar‐plasma‐treated PTFE film. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 80–89, 2000  相似文献   

18.
By introducing 2,5-dihydroxyterephthalic acid (DHTA) into poly(p-phenylene benzoxazole) (PBO) macromolecular chains, dihydroxy poly(p-phenylene benzobisoxazole) (DHPBO) was synthesized and then DHPBO fibers were prepared by dry-jet wet-spinning method. Effects of hydroxyl polar groups on surface wettability and interfacial adhesion ability of PBO fiber were investigated. With the incorporation of double hydroxyl polar groups, contact angle on PBO fiber for water can decrease from 71.4° to 50.70°, and contact angle for ethanol can decrease from 37.2° to 27.40°. The wetting time on DHPBO fibers for water can be as short as 650 ms, which is half of that of PBO fibers. The interfacial shearing strength (IFSS) between DHPBO (10% mol content DHTA) fibers and epoxy resin is 18.87 MPa, 92.55% higher than that of PBO fibers. SEM images indicate that the PBO/epoxy composite failure mode may change from fiber/matrix adhesive failure to partially cohesive failure.  相似文献   

19.
The X‐ray‐induced sample damage during mono XPS analysis of an oxygen‐plasma‐oxidized and subsequently wet‐chemically reduced poly(propylene) film was investigated as a showcase for plasma‐modified or plasma‐deposited samples. By doing this, the degradation index approach as introduced by Beamson and Briggs in the Scienta ESCA300 high‐resolution XPS database of organic polymers has been adopted. As to be expected, the sample degrades by loosing oxygen as revealed by observation of decreasing O/C and C OR/Csum ratios. However, the X‐ray degradation indices are definitely higher than those of conventional reference polymers. Moreover, the C OR/Csum degradation index is significantly higher in comparison with one obtained for the O/C ratio. In that context, there is no difference between the plasma sample and a conventional poly(vinyl alcohol) polymer. It is concluded that for reliable quantitative surface chemical analysis, the quality of spectra in terms of acquisition times must be optimized aimed to a minimization of X‐ray degradation. Finally, it is proposed to describe the photon flux of an X‐ray gun in an XPS experiment, which defines the degradation rate at the end, by using the sample current simply measured with a carefully grounded sputter‐cleaned reference silver sample. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The physical aging properties of amorphous thermoplastics having various terminal groups were investigated with creep recovery and linear dilatometry. The structure of the chain end groups affected physical aging at lower molecular weights; however, above the critical molecular weight for entanglements the end‐group effect on aging diminished. Experimental densities and glass‐transition temperatures were also end‐group dependent. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2850–2860, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号