首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The performance of the atmospheric pressure photoionization (APPI) technique was evaluated against five sets of standards and drug-like compounds and compared to atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI). The APPI technique was first used to analyze a set of 86 drug standards with diverse structures and polarities with a 100% detection rate. More detailed studies were then performed for another three sets of both drug standards and proprietary drug candidates. All 60 test compounds in these three sets were detected by APPI with an overall higher ionization efficiency than either APCI or ESI. Most of the non-polar compounds in these three sets were not ionized by APCI or ESI. Analysis of a final set of 201 Wyeth proprietary drug candidates by APPI, APCI and ESI provided an additional comparison of the ionization techniques. The detection rates in positive ion mode were 94% for APPI, 84% for APCI, and 84% for ESI. Combining positive and negative ion mode detection, APPI detected 98% of the compounds, while APCI and ESI detected 91%, respectively. This analysis shows that APPI is a valuable tool for day-to-day usage in a pharmaceutical company setting because it is able to successfully ionize more compounds, with greater structural diversity, than the other two ionization techniques. Consequently, APPI could be considered a more universal ionization method, and therefore has great potential in high-throughput drug discovery especially for open access liquid chromatography/mass spectrometry (LC/MS) applications.  相似文献   

2.
3.
4.
5.
6.
Atmospheric pressure photoionization (APPI) is a novel method of ionization in liquid chromatography/mass spectrometry (LC/MS). It was originally developed in order to broaden the range of LC/MS ionizable compounds towards less polar compounds that cannot be analyzed by electrospray (ESI) and atmospheric pressure chemical ionization (APCI). Studies done thus far have shown that non-polar compounds that earlier were not ionizable in LC/MS can indeed be ionized by the use of APPI. However, the best ionization efficiency for low polarity samples has been achieved with low proton affinity (PA) solvents that are not suitable in reversed-phase LC (RP-LC). Here it is demonstrated that the signals for analytes with low proton affinities in acetonitrile can be increased 100-fold by using anisole as the dopant for APPI, which takes the sensitivity to the same level achieved in the analysis of high PA analytes.  相似文献   

7.
A comprehensive atmospheric pressure photoionization (APPI) mass spectrometry investigation of hexamethonium bromide is reported. This bisquaternary ammonium salt is a model system for the investigation of multiply charged species and elucidation of ion formation processes. It has been used to elucidate the physicochemical phenomenon occurring when photoionization is carried out at atmospheric pressure. First, the in-source fragmentations were studied for aqueous solutions of the salt with the photoionization lamp switched off, i.e. under thermospray conditions. It is shown that, in this mode of operation, fragmentations are minor and may be classified into two classes, namely dequaternization and charge separation, arising from the two precursors, M2+ and [M+Br]+. Second, the fragmentation patterns have been monitored in dopant- assisted APPI for different dopants (toluene, toluene-d8, anisole and hexafluorobenzene) at various amounts. At low dopant flow rates, the [M+Br]+ and M2+ ions are still observed. As the flow rate is increased, these precursor ions lose intensity and are finally suppressed for all three dopants. Comparison of toluene and toluene-d8 reveals that H atoms may be transferred from the dopant to the molecular ions, very likely mediated by the solvent. The role of the solvent (water) was also investigated by using heavy water. Apart from the thermospray fragmentations, which are also observed in APPI, several fragmentation pathways appear to be specific to the photoionization process. Photoionization efficiencies are measured by determination of the relative photoionization cross sections with respect to toluene. It is found that, when the ionization efficiencies are taken into account, the depletion of the precursors as a function of the dopant flow rates is the same for all three dopant molecules. This result shows that the precursor ions are depleted by reactions with the photoelectrons released from the dopant. Three additional mechanisms are proposed to account for this effect: electron transfer or H atom transfer from negatively charged water nanodroplets and H atom transfer from the dopant.  相似文献   

8.
9.
Only five years after the first publication on atmospheric pressure photoionization (APPI), this technique has evolved rapidly as a very useful complement to established ionization techniques for liquid chromatography/mass spectrometry (LC/MS). This is reflected in a rapidly increasing number of publications in this field. On the one hand, thorough studies into the photoionization mechanism have provided deep insights into the roles and influences of the solvent, the dopant and other additives. On the other hand, a large number of new and attractive applications have recently been introduced. New instrumental developments have resulted in combined APPI/ESI (PAESI) and APPI/APCI sources and a microfabricated APPI source. In this review, the most important developments within the field are summarized, focusing in particular on the applications of the technique.  相似文献   

10.
Atmospheric pressure (AP) matrix‐assisted laser desorption/ionization (MALDI) is known to suffer from poor ion transfer efficiencies as compared to conventional vacuum MALDI (vMALDI). To mitigate these issues, a new AP‐MALDI ion source utilizing a coaxial gas flow was developed. Nitrogen, helium, and sulfur hexafluoride were tested for their abilities as ion carriers for a standard peptide and small drug molecules. Nitrogen showed the best ion transport efficiency, with sensitivity gains of up to 1900% and 20% for a peptide standard when the target plate voltage was either continuous or pulsed, respectively. The addition of carrier gas not only entrained the ions efficiently but also deflected background species and declustered analyte–matrix adducts, resulting in higher absolute analyte signal intensities and greater signal‐to‐noise (S/N) ratios. With the increased sensitivity of pneumatically assisted (PA) AP‐MALDI, the limits of detection of angiotensin I were 20 or 3 fmols for continuous or pulsed target plate voltage, respectively. For analyzing low‐mass analytes, it was found that very low gas flow rates (0.3–0.6 l min?1) were preferable owing to increased fragmentation at higher gas flows. The analyte lability, type of gas, and nature of the extraction field between the target plate and mass spectrometer inlet were observed to be the most important factors affecting the performance of the in‐line PA‐AP‐MALDI ion source. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
12.
13.
Benzylisoquinoline alkaloids found in the Papaveraceae family play a major role in pharmaceutical biology. This is the first systematic study dealing with electrospray tandem mass spectrometry (ESI-MS/MS) of all benzylisoquinolines found as biogenetic precursors of morphinan alkaloids. Tandem mass spectral data are presented for norlaudanosoline, laudanosoline, 4'-O-methyl-norlaudanosoline, 6-O-methyl-norlaudanosoline, norcoclaurine, coclaurine, N-methylcoclaurine, N-methyl-3'-hydroxycoclaurine, N-methyl-3'-O-methylcoclaurine, norreticuline and reticuline. This study compares results obtained using an ion trap mass spectrometer with those obtained using a triple quadrupole one. The results highlight the differences of the tandem-in-time versus the tandem-in-space principle, often hampering the development of ESI-MS/MS libraries. Additionally, the use of the atmospheric pressure photoionisation technique for the analysis of such substances is discussed.  相似文献   

14.
Gas chromatography (GC) and ion trap mass spectrometry (MS) were combined with microchip atmospheric pressure chemical ionization (microAPCI) and microchip atmospheric pressure photoionization (microAPPI) sources. Selected polychlorinated biphenyls (PCBs, IUPAC Nos. 28, 52, 101, 118, 138, 153 and 180) were analyzed by GC/microAPCI-MS and GC/microAPPI-MS to demonstrate the applicability of the miniaturized ion sources in negative ion mode analysis. The microAPCI and microAPPI methods were evaluated in respect of detection limit, linearity and repeatability. The detection limits for the PCB congeners were somewhat lower with microAPCI than with microAPPI, whereas microAPPI showed slightly wider linear range and better repeatability. With both methods, the best results were obtained for highly chlorinated or non-ortho-chlorinated PCBs, which possess the highest electron affinities. Finally, the suitability of the GC/microAPPI-MS method for the analysis of PCBs in environmental samples was demonstrated by analyzing soil extracts, and by comparing the results with those obtained by gas chromatography with electron capture detection (GC/ECD).  相似文献   

15.

Rationale

Mass spectrometry imaging (MSI) is a powerful tool for mapping the surface of a sample. Time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS) and atmospheric pressure matrix‐assisted laser desorption/ionization (AP‐MALDI) offer complementary capabilities. Here, we present a workflow to apply both techniques to a single tissue section and combine the resulting data for the example of human colon cancer tissue.

Methods

Following cryo‐sectioning, images were acquired using the high spatial resolution (1 μm pixel size) provided by TOF‐SIMS. The same section was then coated with a para‐nitroaniline matrix and images were acquired using AP‐MALDI coupled to an Orbitrap mass spectrometer, offering high mass resolution, high mass accuracy and tandem mass spectrometry (MS/MS) capabilities. Datasets provided by both mass spectrometers were converted into the open and vendor‐independent imzML file format and processed with the open‐source software MSiReader.

Results

The TOF‐SIMS and AP‐MALDI mass spectra show strong signals of fatty acids, cholesterol, phosphatidylcholine and sphingomyelin. We showed a high correlation between the fatty acid ions detected with TOF‐SIMS in negative ion mode and the phosphatidylcholine ions detected with AP‐MALDI in positive ion mode using a similar setting for visualization. Histological staining on the same section allowed the identification of the anatomical structures and their correlation with the ion images.

Conclusions

This multimodal approach using two MSI platforms shows an excellent complementarity for the localization and identification of lipids. The spatial resolution of both systems is at or close to cellular dimensions, and thus spatial correlation can only be obtained if the same tissue section is analyzed sequentially. Data processing based on imzML allows a real correlation of the imaging datasets provided by these two technologies and opens the way for a more complete molecular view of the anatomical structures of biological tissues.
  相似文献   

16.
The chances to improve the detection of pesticides using differential mobility spectrometry (DMS) with an atmospheric pressure photoionization (APPI) ion source by means of dopants was investigated. The effect of employing benzene, anisole and chlorobenzene as dopants is described regarding sensitivity, limits of detection and peak displacements in the spectra. For typical pesticides an improvement of detection limits up to two orders of magnitude could be determined, while for the peak shift of individual substances no uniform behaviour was observed. Possible mechanisms of action in respect to atmospheric pressure photoionization (APPI) processes are discussed.  相似文献   

17.
18.
Fusarium species, a plant pathogenic fungus of wheat and other cereals, produces toxic metabolites such as nivalenol (NIV) and deoxynivalenol (DON). Control of contamination by these toxins is very difficult, and a continuous survey of the occurrence is necessary for these toxins. Thus, the accurate and convenient determination of the cereals contaminated with these toxins is important for the supply of safe foods. A selective analytical method based on high‐performance liquid chromatography, combined with atmospheric pressure photoionization (APPI) mass spectrometry, has been developed for simultaneous determination of NIV and DON. The parameters investigated for the optimization of APPI were the ion source parameters fragmentor voltage, capillary voltage, and vaporizer temperature, and also mobile phase composition and flow rate. Furthermore, chemical noise and signal suppression of analyte signals due to sample matrix interference were investigated for APPI. The results indicated that APPI provides lower matrix effect and the correlation coefficient of NIV and DON in the range 0.2–100 ng · mL?1 was above 0.999. Recoveries of NIV and DON in wheat ranged from 86 to 107% and limits of detection of NIV and DON were 0.20 ng · g?1 and 0.39 ng · g?1, respectively. In addition, the proposed method was applied for the analysis of naturally contaminated wheat samples. APPI was found to offer lower matrix effect and was a convenient technique for routine analysis of NIV and DON residues in wheat at trace levels. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Capillary electrophoresis (CE) has been combined with atmospheric pressure photoionization (APPI) and electrospray ionization (ESI) for mass spectrometric (MS) detection. Separation conditions using potassium phosphate buffer and ammonium formate buffer have been compared for analysis of eleven pharmaceutical bases. The results showed improvements in separation efficiency and peak symmetry when phosphate buffer was used. The low flow in CE may enable utilization of these advances with MS detection. Compared with ESI, the APPI technique provided a cluster-free background. The enhanced signal-to-noise ratio in the total ion current (TIC) and the reduced spectral background indicated that the APPI process is less affected by non-volatile salts in the CE buffers. This results in a wider range of choice of CE buffers in CE/MS analysis when APPI is the ionization method.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号