首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new fragmentation process was proposed to interpret the characteristic product ion at m/z 130 of protonated arginine. The α‐amino group was dissociated from protonated arginine and then combined with the (M + H‐NH3) fragment to form an ion‐neutral complex which further generated a hydroxyl‐amino exchange intermediate compound through an ion‐molecule reaction. This intermediate compound was synthesized from argininamide through a diazo reaction, and then the reaction mixture was analyzed using liquid chromatography combined with mass spectrometry (LC‐MS). The collision‐induced dissociation experiments under the same conditions revealed that this intermediate compound produced the characteristic product ion at m/z 130 as well as protonated arginine, and in addition, density functional theory calculations were performed to confirm simultaneous loss of NH3 and CO from this intermediate to give the m/z 130 ion.  相似文献   

2.
The gas‐phase fragmentation/rearrangement reactions of compound 1, [2‐(4,6‐dimethoxypyrimidin‐2‐yloxy)‐benzyl]‐[4‐(piperidine‐1‐sulfonyl)phenyl]amine, have been examined by Fourier transform ion cyclotron resonance mass spectrometry (FTICR‐MS). The analyses reveal that under sustained off‐resonance irradiation collision‐induced dissociation (SORI‐CID) conditions in the FTICR cell, protonated 1 undergoes two competitive pathways initiated by different protonation positions. The first pathway is initiated by protonation on the amino group and yields only one fragment ion due to loss of the entire benzenesulfonamide moiety. In the second pathway, protonation of the sulfonamide group leads to cleavage of a sulfonamide bond with loss of the neutral piperidine, followed by loss of SO via a sulfonyl cation rearrangement. An intramolecular SNAr mechanism is proposed to rationalize the rearrangement of the p‐aminophenylsulfonyl cation and the resulting SO loss. To test the generality of this process, SORI‐CID spectra of protonated sulfamethoxazole and of the p‐aminophenylsulfonyl cation (SBN) were obtained. For the SBN ion, SORI‐CID experiments as well as density functional theory (B3LYP) calculations show that rearrangement, assigned as a SNAr reaction of the sulfonyl cation group, can account for the observed SO loss process. Candidate transition state structures were optimized at the B3LYP/6‐31+G (d, p) level of theory using the Gaussian98 molecular modeling package. The computational results show that the barrier for SO loss from SBN is much lower than that for SO2 loss, which satisfactorily rationalizes the SORI‐CID experimental results for SBN. Moreover, it is proposed that a fragment ion at m/z 196 in the MS/MS spectrum of protonated 1 is formed via the ion resulting from SO loss via a second intramolecular SNAr mechanism. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
The fragmentation patterns of a series of six novel synthesized benzopyranopyrimidine derivatives 16, possessing the same 2‐oxo‐2H‐benzopyrano[2,3‐d]pyrimidine backbone structure, were investigated by electrospray ionization mass spectrometry (ESI‐MS) and tandem mass spectrometry (MS/MS) techniques using a quadrupole orthogonal time‐of‐flight (QqToF)‐hybrid instrument. The series of six pure benzopyranopyrimidine compounds contained three constitutional isobaric isomers (compounds 46). A simple methodology, based on the use of ESI (positive ion mode) and increasing the declustering potential in the atmospheric pressure/vacuum interface resulting in collision‐induced dissociation (CID), was used to enhance the formation of the product ions. In general, the novel synthetic benzopyranopyrimidine derivatives 16 afforded exact accurate masses for the protonated molecules. This led to the confirmation of both molecular masses and chemical structures of the studied compounds. The breakdown routes of the protonated molecules were rationalized by conducting low‐energy CID‐MS/MS analyses. It was shown that the MS/MS fragmentation routes for the protonated molecules 1 and 2 were similar, and that the MS/MS fragmentations of the constitutional isobaric protonated molecules 5 and 6 were identical. It was also shown that the gas‐phase CID fragmentations of 5 and 6 were different from that of their constitutional isomer 4. Finally, the ESI‐MS and CID‐MS/MS analyses of the protonated molecules that were obtained from the monodeuterated benzopyranopyrimidine derivatives 16 confirmed the values obtained for the exact masses, the precise structural assignments of all product ions and all the pathways described in the proposed CID fragmentations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Lipopeptide biosurfactants produced by the Bacillus licheniformis V9T14 strain showed an interesting anti‐adhesion activity against biofilm formation of human pathogenic bacterial strains. The chemical characterisation of the crude extract of V9T14 strain was first developed through electrospray ionisation mass spectrometry (ESI‐MS) and ESI‐MS/MS direct infusions: two sets of molecular ion species belonging to the fengycin and surfactin families were revealed and their structures defined, interpreting their product ion spectra. The LC/ESI‐MS analysis of the crude extract allowed to separate in different chromatogram ranges the homologues and the isoforms of the two lipopeptide families. The extract was then fractionated by silica gel chromatography in two main fractions, I and II. The purified biosurfactants were analysed through a new, rapid and suitable LC/ESI‐MS/MS method, which allowed characterising the composition and the structures of the produced lipopeptides. LC/ESI‐MS/MS analysis of fraction I showed the presence of C13, C14 and C15 surfactin homologues, whose structures were confirmed by the product ion spectra of the sodiated molecules [M + Na]+ at m/z 1030, 1044 and 1058. LC/ESI‐MS/MS analysis of fraction II confirmed the presence of two main fengycin isoforms, with the protonated molecules [M + H]+ at m/z 1478 and 1506 corresponding to C17 fengycin A and C17 fengycin B, respectively. Other homologues (C14 to C16) were revealed and confirmed as belonging to fengycin A or B according to the retention times and the product ions generated, although with the same nominal mass. Finally, a relative percentage content of each homologue for both lipopeptides families in the whole extract was proposed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
In the literature, it is reported that the protonated ketotifen mainly undergoes C?C double bond cleavage in electrospray ionization tandem mass spectrometry (ESI‐MS/MS); however, there is no explanation on the mechanism of this fragmentation reaction. Therefore, we carried out a combined experimental and theoretical study on this interesting fragmentation reaction. The fragmentation of protonated ketotifen (m/z 310) always generated a dominant fragment ion at m/z 96 in different electrospray ionization mass spectrometers (ion trap, triple quadrupole and linear trap quadrupole (LTQ)‐orbitrap). The mechanism of the generation of this product ion (m/z 96) through the C?C double bond cleavage was proposed to be a sequential hydrogen migration process (including proton transfer, continuous two‐step 1,2‐hydride transfer and ion‐neutral complex‐mediated hydride transfer). This mechanism was supported by density functional theory (DFT) calculations and a deuterium labeling experiment. DFT calculations also showed that the formation of the product ion m/z 96 was most favorable in terms of energy. This study provides a reasonable explanation for the fragmentation of protonated ketotifen in ESI‐MS/MS, and the fragmentation mechanism is suitable to explain other C?C double bond cleavage reactions in mass spectrometry. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
A 50 m/z unit loss from protonated 4-benzenesulfinyl-3-methylphenylamine has been observed and investigated using electrospray ionisation quadrupole ion trap mass spectrometry (ESI-QIT-MS). It was hypothesised that the specific fragmentation was affected by the presence of an ortho methyl group in relation to the sulfoxide functionality, i.e. an ortho effect influences the preferred dissociation pathway. This was because the des-methyl homologue did not display a 50 m/z unit loss. This fragmentation was shown to be a two-step process with sequential losses of a hydroxyl radical and a thiol radical. Molecular modelling calculations showed that the most favourable site of protonation for 4-benzenesulfinyl-3-methylphenylamine was the sulfoxide oxygen, which would facilitate the loss of a hydroxyl radical. Subsequent deuterium-exchange experiments confirmed that the loss was a hydroxyl radical and afforded definitive assignment of the site of protonation. Furthermore, the involvement of a single exchangeable hydrogen atom in the overall 50 m/z unit loss was demonstrated. Thus, supportive evidence was provided for the involvement of the ortho methyl group in the second stage of the fragmentation, leading to the loss of the thiol radical. Accurate mass measurements, performed using electrospray ionisation Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS), verified the elemental formulae of the individual losses. The ion structure following the 50 m/z unit loss was proposed to be a protonated aminofluorene and was supported by comparing the product ion spectrum of commercially available protonated 2-aminofluorene with the MS4 data of protonated 4-benzenesulfinyl-3-methylphenylamine. Fragmentation mechanisms are proposed. The relevance of the loss with regards to pharmaceutical drug metabolite identification is discussed.  相似文献   

7.
Salsolinol, 1‐methyl‐6,7‐dihydroxy‐2,3,4,5‐tetrahydroisoquinoline (SAL), is a precursor of a Parkinsonian neurotoxin, N‐methysalsolinol (N‐methyl‐SAL). Previous studies have shown that individual enantiomers of N‐methyl‐SAL possess distinct neurotoxicological properties. In this work, a chiral high‐performance liquid chromatography (HPLC) method with electrospray ionization tandem mass spectrometric (ESI‐MS/MS) detection was developed for the quantification of (R/S)‐SAL enantiomers. Enantioseparation was achieved on a β‐cyclodextrin‐bonded silica gel column, and the resolved enantiomers were detected by ESI‐MS/MS operated in positive ion mode. The ESI collision‐induced dissociation (CID) mass spectrum of SAL was studied together with that of its deuterium‐labeled analog (i.e. salsolinol‐α,α,α,1‐d4, SAL‐d4) so that the fragmentation pathways could be elucidated. Further, using SAL‐d4 as internal standard in HPLC/MS/MS analysis of SAL improved significantly assay accuracy and reliability. Determination of (R/S)‐SAL enantiomers present in food samples such as dried banana chips was demonstrated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Liquid chromatography (LC) with positive ion electrospray ionization (ESI+) coupled to a hybrid quadrupole linear ion trap (LTQ) and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) was employed for the simultaneous determination of caffeine and its metabolites in human urine within a single chromatographic run. LC/ESI‐FTICRMS led to the unambiguous determination of the molecular masses of the studied compounds without interference from other biomolecules. A systematic and comprehensive study of the mass spectral behaviour of caffeine and its fourteen metabolites by tandem mass spectrometry (MS/MS) was performed, through in‐source ion trap collision‐induced dissociation (CID) of the protonated molecules, [M+H]+. A retro‐Diels‐Alder (RDA) process along with ring‐contraction reactions were the major fragmentation pathways observed during CID. The base peak of xanthine precursors originates from the loss of methyl isocyanate (CH3NCO, 57 Da) or isocyanic acid (HNCO, 43 Da), which in turn lose a CO unit. Also uric acid derivatives shared a RDA rearrangement as a common fragmentation process and a successive loss of CO2 or CO. The uracil derivatives showed a loss of a ketene unit (CH2CO, 42 Da) from the protonated molecule along with the loss of H2O or CO. To assess the potential of the present method three established metabolite ratios to measure P450 CYP1A2, N‐acetyltransferase and xanthine oxidase activities were evaluated by a number of identified metabolites from healthy human urine samples after caffeine intake. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Fragmentation reactions of β‐hydroxymethyl‐, β‐acetoxymethyl‐ and β‐benzyloxymethyl‐butenolides and the corresponding γ‐butyrolactones were investigated by electrospray ionization tandem mass spectrometry (ESI‐MS/MS) using collision‐induced dissociation (CID). This study revealed that loss of H2O [M + H ?18]+ is the main fragmentation process for β‐hydroxymethylbutenolide (1) and β‐hydroxymethyl‐γ‐butyrolactone (2). Loss of ketene ([M + H ?42]+) is the major fragmentation process for protonated β‐acetoxymethyl‐γ‐butyrolactone (4), but not for β‐acetoxymethylbutenolide (3). The benzyl cation (m/z 91) is the major ion in the ESI‐MS/MS spectra of β‐benzyloxymethylbutenolide (5) and β‐benzyloxymethyl‐γ‐butyrolactone (6). The different side chain at the β‐position and the double bond presence afforded some product ions that can be important for the structural identification of each compound. The energetic aspects involved in the protonation and gas‐phase fragmentation processes were interpreted on the basis of thermochemical data obtained by computational quantum chemistry. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
During the process of exploring aqueous piperazine chemistry under simulated flue‐gas scrubbing conditions, positive‐ion electrospray ionisation mass spectrometric (ESI‐MS) analyses of the resulting reaction mixtures in a triple quadrupole system revealed the presence of peaks at m/z 116 and 145, the putative N‐nitroso derivatives of piperazine. Confirmation of the presence of these species in the reaction mixtures was achieved using collision‐induced dissociation experiments. A purchased standard, together with in‐house synthesised N‐nitrosopiperazine standards (including N‐nitroso derivatives derived from deuterium‐labelled precursor materials), were used for this purpose. Across a small range of collision energies, large fluctuations in the abundance of the two major product ions of protonated N‐nitrosopiperazine, m/z 86 and 85, were observed. Using B3LYP/6‐311 + +G(d,p) computations, the potential energy surface was determined for loss of NO and [H,N,O]. At an activation energy slightly in excess of 1 eV, intramolecular isomerisation precedes loss of NO (m/z 86) via a 4,1 H‐shift, and at activation energies between 2.1–2.3 eV, consecutive loss of NO and atomic hydrogen competes with the direct loss of nitrosyl hydride (m/z 85). It is recommended that any multiple reaction monitoring method for quantifying N‐nitrosopiperazines at low collision energies use the sum of both transitions (m/z 116 ← 85, m/z 116 ← 86) to avoid errors that could be introduced by subtle changes in ES source conditions or collision voltages. This approach is adopted in an HPLC/MS/MS method used to monitor the degradation of N‐nitrosopiperazine exposed to (i) broad‐band UV light and (ii) heat typical of an amine regeneration (stripper) tower. The results reveal that aqueous N‐nitrosopiperazine is thermally stable at 150°C but will degrade slowly upon exposure to UV light. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
2,3‐Dimethyl‐2,3‐dinitrobutane (DMNB) is an explosive taggant added to plastic explosives during manufacture making them more susceptible to vapour‐phase detection systems. In this study, the formation and detection of gas‐phase [M+H]+, [M+Li]+, [M+NH4]+ and [M+Na]+ adducts of DMNB was achieved using electrospray ionisation on a triple quadrupole mass spectrometer. The [M+H]+ ion abundance was found to have a strong dependence on ion source temperature, decreasing markedly at source temperatures above 50°C. In contrast, the [M+Na]+ ion demonstrated increasing ion abundance at source temperatures up to 105°C. The relative susceptibility of DMNB adduct ions toward dissociation was investigated by collision‐induced dissociation. Probable structures of product ions and mechanisms for unimolecular dissociation have been inferred based on fragmentation patterns from tandem mass (MS/MS) spectra of source‐formed ions of normal and isotopically labelled DMNB, and quantum chemical calculations. Both thermal and collisional activation studies suggest that the [M+Na]+ adduct ions are significantly more stable toward dissociation than their protonated analogues and, as a consequence, the former provide attractive targets for detection by contemporary rapid screening methods such as desorption electrospray ionisation mass spectrometry. Copyright © 2009 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.  相似文献   

12.
A combination of electrospray ionisation (ESI), multistage and high‐resolution mass spectrometry experiments is used to examine the gas‐phase fragmentation reactions of the three isomeric phenylalanine derivatives, α‐phenylalanine, β2‐phenylalanine and β3‐phenylalanine. Under collision‐induced dissociation (CID) conditions, each of the protonated phenylalanine isomers fragmented differently, allowing for differentiation. For example, protonated β3‐phenylalanine fragments almost exclusively via the loss of NH3, only β2‐phenylalanine via the loss of H2O, while α‐ and β2‐phenylalanine fragment mainly via the combined losses of H2O + CO. Density functional theory (DFT) calculations were performed to examine the competition between NH3 loss and the combined losses of H2O and CO for each of the protonated phenylalanine isomers. Three potential NH3 loss pathways were studied: (i) an aryl‐assisted neighbouring group; (ii) 1,2 hydride migration; and (iii) neighbouring group participation by the carboxyl group. Finally, we have shown that isomer differentiation is also possible when CID is performed on the protonated methyl ester and methyl amide derivatives of α‐, β2‐ and β3‐phenylalanines. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
In this study, we evaluated, by electrospray ionization mass spectrometry (ESI‐MS) and collision‐induced dissociation tandem mass spectrometry (CID‐MS/MS) using a quadrupole orthogonal time‐of‐flight (QqToF)‐MS/MS hybrid instrument, the gas‐phase fragmentations of some commercially available biotinyl reagents. The biotin reagents used were: psoralen‐BPE 1, p‐diazobenzoyl biocytin (DBB) 2, photoreactive biotin 3, biotinyl‐hexaethyleneglycol dimer 4, and the sulfo‐SBED 5. The results showed that, during ESI‐MS and CID‐MS/MS analyses, the biotin reagents followed a similar gas‐phase fragmentation pattern and the cleavages usually occurred at either end of the spacer arm of the biotin reagents. In general we have observed that the CID‐MS/MS fragmentation routes of the five precursor protonated molecules obtained from the biotin linkers 15 afforded a series of product ions formed essentially by similar routes. The genesis and the structural identities of all the product ions obtained from the biotin linkers 15 have been assigned. All the exact mass assignments of the protonated molecules and the product ions were verified by conducting separate CID‐MS/MS analysis of the deuterium‐labelled precursor ions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Human exposure to polycyclic aromatic hydrocarbons (PAHs) from sources such as industrial or urban air pollution, tobacco smoke and cooked food is not confined to a single compound, but instead to mixtures of different PAHs. The interaction of different PAHs may lead to additive, synergistic or antagonistic effects in terms of DNA adduct formation and carcinogenic activity resulting from changes in metabolic activation to reactive intermediates and DNA repair. The development of a targeted DNA adductomic approach using liquid chromatography/tandem mass spectrometry (LC/MS/MS) incorporating software‐based peak picking and integration for the assessment of exposure to mixtures of PAHs is described. For method development PAH‐modified DNA samples were obtained by reaction of the anti‐dihydrodiol epoxide metabolites of benzo[a]pyrene, benzo[b]fluoranthene, dibenzo[a,l]pyrene (DB[a,l]P) and dibenz[a,h]anthracene with calf thymus DNA in vitro and enzymatically hydrolysed to 2′‐deoxynucleosides. Positive LC/electrospray ionisation (ESI)‐MS/MS collision‐induced dissociation product ion spectra data showed that the majority of adducts displayed a common fragmentation for the neutral loss of 116 u (2′‐deoxyribose) resulting in a major product ion derived from the adducted base. The exception was the DB[a,l]P dihydrodiol epoxide adduct of 2′‐deoxyadenosine which resulted in major product ions derived from the PAH moiety being detected. Specific detection of mixtures of PAH‐adducted 2′‐deoxynucleosides was achieved using online column‐switching LC/MS/MS in conjunction with selected reaction monitoring (SRM) of the [M+H]+ to [M+H–116]+ transition plus product ions derived from the PAH moiety for improved sensitivity of detection and a comparison was made to detection by constant neutral loss scanning. In conclusion, different PAH DNA adducts were detected by employing SRM [M+H–116]+ transitions or constant neutral loss scanning. However, for improved sensitivity of detection optimised SRM transitions relating to the PAH moiety product ions are required for certain PAH DNA adducts for the development of targeted DNA adductomic methods. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Knowledge of the fragmentation mechanisms of lactones and their behaviour under electrospray ionization (ESI) conditions can be extended to larger and more complex natural products that contain an α,β‐unsaturated γ‐lactone moiety in their structure. Moreover, little is known about the gas‐phase behaviour of α,β‐unsaturated γ‐lactones linked or fused to sugars. Therefore, five α,β‐unsaturated γ‐lactones (butenolides) fused to a pyranose ring, recently synthesized compounds with potential relevance regarding their biological properties, were investigated using ESI‐MS and ESI‐MS/MS in both positive and negative ion modes. Their fragmentation mechanisms and product ion structures were compared. It was observed that two isomers could be unambiguously distinguished in the negative ion mode by the fragmentation pathways of their deprotonated molecules as well as in the positive ion mode by the fragmentation pathways of either the protonated or the sodiated molecule. Fragmentation mechanisms are proposed taking into account the MS/MS data and semi‐empirical calculations using the PM6 Hamiltonean. The semi‐empirical calculations were also very useful in determining the most probable protonation and cationization sites. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Five well‐known active naphtodianthrone constituents of Hypericum perforatum (St John's Wort) extracts have been investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI‐FTICRMS) and ESI‐FTICRMSn. The studied compounds were hypericin, pseudohypericin, protohypericin, protopseudohypericin (biosynthetic precursors of the two former compounds, respectively) and isopseudohypericin (alkaline degradation product of pseudohypericin). Dissociation mass spectrometry measurements performed on the [M–H]? ion presented a variable efficiency as a function of the used activation mode. Sustained off‐resonance irradiation collision‐induced dissociation (SORI–CID) only led to a restricted number of fragment ions. In contrast, IRMPD ensured the detection of numerous product ions. Ions detected in ESI‐FTICRMS and ESI‐FTICRMSn experiments were measured with a very high mass accuracy (typically mass error is lower than 0.5 mDa at m/z close to 500) that allowed unambiguous formulae to be assigned to each signal observed in a mass spectrum. In spite of similar structures, specific fragmentation patterns were observed for the different compounds investigated. This study may be useful in the future to characterize in natural extracts these compounds (or derivatives of these compounds) by liquid chromatography/tandem mass spectrometry (LC/MS/MS) experiments by considering the MS/MS transitions highlighted in this paper. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The electrospray ionization (ESI) mass spectrometric behavior of five Stemona alkaloids, stemokerrin, oxystemokerrin, oxystemokerrilactone, oxystemokerrin N‐oxide and stemokerrin N‐oxide, was studied using an ESI tandem mass technique (MSn). These compounds, isolated from Stemona saxorum endemic in Vietnam, represent a class of alkaloids containing a pyrido[1,2‐a]azepine A,B‐ring core with a 1‐hydroxypropyl side chain attached to C‐4. Their fragmentation pathways were elucidated by ESI‐MSn results and the elemental composition of the major product ions was confirmed by accurate mass measurement. In order to rationalize some fragmentation pathways, the relative Gibbs free energies of some product ions were estimated using the B3LYP/6‐31+G(d) method. Based on the ESI‐MSn results of five reference compounds, a reversed‐phase high‐performance liquid chromatography with tandem mass spectrometry (RP‐HPLC/MSn) method was developed for the characterization of Stemona alkaloids with a pyrido[1,2‐a]azepine A,B‐ring core from the extract of S. saxorum. A total of 41 components were rapidly identified or tentatively characterized, of which 12 compounds were identified as Stemona alkaloids with a pyrido[1,2‐a]azepine A,B‐ring core, including four new compounds. This method is convenient and sensitive, especially for minor components in complex natural product extracts. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
电喷雾质谱被应用于分辨2-氨基-1,3-恶嗪及六氢化-4-苯基-吡喃[2,3-d]嘧啶-2-酮的杂环结构。两类化合物均为三组份反应的产物,且其杂环的结构很难用NMR判断。实验首次系统研究了两类化合物的质谱学行为(包括氘代实验和高分辨质谱研究),发现前者在CID实验中丢失CH2N2和HCNO,而后者为直接丢失尿素。这些特征丢失为该类衍生物的结构判断,尤其是高通量的合成产物分析提供了重要的依据。  相似文献   

19.
An HPLC separation method with triethylammonium acetate mobile phase additive developed for the analysis of impurities in polysulphonated azo dyes provides good separation selectivity and compatibility with electrospray ionisation (ESI) mass spectrometry. The negative‐ion ESI mass spectra containing only peaks of deprotonated molecules [M–H] for monosulphonic acids, [M–xH]x, and sodiated adducts [M–(x + y)H + yNa]x for polysulphonic acids allow easy molecular mass determination of unknown impurities. Based on the knowledge of the molecular masses and of the fragment ions in the MS/MS spectra, probable structures of trace impurities in commercial dye samples are proposed. To assist in the interpretation of the mass spectra of complex polysulphonated azodyes, additional information can be obtained after chemical reduction of azodyes to aromatic amines. The structures of the non‐sulphonated reduction products can be determined by reversed‐phase HPLC/MS with positive‐ion atmospheric pressure chemical ionisation and of the sulphonated products by ion‐pairing HPLC/MS with negative‐ion ESI.  相似文献   

20.
Two new series of Boc‐N‐α,δ‐/δ,α‐ and β,δ‐/δ,β‐hybrid peptides containing repeats of L ‐Ala‐δ5‐Caa/δ5‐Caa‐L ‐Ala and β3‐Caa‐δ5‐Caa/δ5‐Caa‐β3‐Caa (L ‐Ala = L ‐alanine, Caa = C‐linked carbo amino acid derived from D ‐xylose) have been differentiated by both positive and negative ion electrospray ionization (ESI) ion trap tandem mass spectrometry (MS/MS). MSn spectra of protonated isomeric peptides produce characteristic fragmentation involving the peptide backbone, the Boc‐group, and the side chain. The dipeptide positional isomers are differentiated by the collision‐induced dissociation (CID) of the protonated peptides. The loss of 2‐methylprop‐1‐ene is more pronounced for Boc‐NH‐L ‐Ala‐δ‐Caa‐OCH3 (1), whereas it is totally absent for its positional isomer Boc‐NH‐δ‐Caa‐L ‐Ala‐OCH3 (7), instead it shows significant loss of t‐butanol. On the other hand, second isomeric pair shows significant loss of t‐butanol and loss of acetone for Boc‐NH‐δ‐Caa‐β‐Caa‐OCH3 (18), whereas these are insignificant for its positional isomer Boc‐NH‐β‐Caa‐δ‐Caa‐OCH3 (13). The tetra‐ and hexapeptide positional isomers also show significant differences in MS2 and MS3 CID spectra. It is observed that ‘b’ ions are abundant when oxazolone structures are formed through five‐membered cyclic transition state and cyclization process for larger ‘b’ ions led to its insignificant abundance. However, b1+ ion is formed in case of δ,α‐dipeptide that may have a six‐membered substituted piperidone ion structure. Furthermore, ESI negative ion MS/MS has also been found to be useful for differentiating these isomeric peptide acids. Thus, the results of MS/MS of pairs of di‐, tetra‐, and hexapeptide positional isomers provide peptide sequencing information and distinguish the positional isomers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号