首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitragyna speciosa (Kratom in Thai), a Thai medical plant, is misused as herbal drug of abuse. Besides the most abundant alkaloids mitragynine (MG) and paynantheine (PAY), several other alkaloids were isolated from Kratom leaves, among them the third abundant alkaloid is speciogynine (SG), a diastereomer of MG. The aim of this present study was to identify the phase I and II metabolites of SG in rat urine after the administration of a rather high dose of the pure alkaloid and then to confirm these findings using human urine samples after Kratom use. The applied liquid chromatography coupled to low- and high-resolution mass spectrometry (LC-HRMS-MS) provided detailed information on the structure in the MS(n) mode particularly with high resolution. For the analysis of the human samples, the LC separation had to be improved markedly allowing the separation of SG and its metabolites from its diastereomer MG and its metabolites. In analogy to MG, besides SG, nine phase I and eight phase II metabolites could be identified in rat urine, but only three phase I and five phase II metabolites in human urine. These differences may be caused by the lower SG dose applied by the user of Kratom preparations. SG and its metabolites could be differentiated in the human samples from the diastereomeric MG and its metabolites comparing the different retention times determined after application of the single alkaloids to rats. In addition, some differences in MS(2) and/or MS(3) spectra of the corresponding diastereomers were observed.  相似文献   

2.
Liquid chromatography with electrospray ionization mass spectrometry for the quantitative determination of famotidine in human urine, maternal and umbilical cord plasma was developed and validated. The plasma samples were alkalized with ammonium hydroxide and extracted twice with ethyl acetate. The extraction recovery of famotidine in maternal and umbilical cord plasma ranged from 53 to 64% and 72 to 79%, respectively. Urine samples were directly diluted with the initial mobile phase then injected into the HPLC system. Chromatographic separation of famotidine was achieved by using a Phenomenex Synergi? Hydro‐RP? column with a gradient elution of acetonitrile and 10 mm ammonium acetate aqueous solution (pH 8.3, adjusted with ammonium hydroxide). Mass spectrometric detection of famotidine was set in the positive mode and used a selected ion monitoring method. Carbon‐13‐labeled famotidine was used as internal standard. The calibration curves were linear (r2 > 0.99) in the concentration ranges of 0.631–252 ng/mL for umbilical and maternal plasma samples and 0.075–30.0 µg/mL for urine samples. The relative deviation of method was <14% for intra‐ and inter‐day assays, and the accuracy ranged between 93 and 110%. The matrix effect of famotidine in human urine, maternal and umbilical cord plasma was less than 17%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Three methods were developed and validated for determination of nemonoxacin in human feces and its major metabolite, nemonoxacin acyl‐β‐ d ‐glucuronide, in human urine and feces. Nemonoxacin was extracted by liquid–liquid extraction in feces homogenate samples and nemonoxacin acyl‐β‐ d ‐glucuronide by a solid‐phase extraction procedure for pretreatment of both urine and feces homogenate sample. Separation was performed on a C18 reversed‐phase column under isocratic elution with the mobile phase consisting of acetonitrile and 0.1% formic acid. Both analytes were determined by liquid chromatography–tandem mass spectrometry with positive electrospray ionization in selected reaction monitoring mode and gatifloxacin as the internal standard. The lower limit of quantitation (LLOQ) of nemonoxacin in feces was 0.12 µg/g and the calibration curve was linear in the concentration range of 0.12–48.00 µg/g. The LLOQ of the metabolite was 0.0010 µg/mL and 0.03 µg/g in urine and feces matrices, while the linear range was 0.0010–0.2000 µg/mL and 0.03–3.00 µg/g, respectively. Validation included selectivity, accuracy, precision, linearity, recovery, matrix effect, carryover, dilution integrity and stability, indicating that the methods can quantify the corresponding analytes with excellent reliability. The validated methods were successfully applied to an absolute bioavailability clinical study of nemonoxacin malate capsule. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
A high‐throughout bioanalytical method based on salting‐out‐assisted liquid/liquid extraction (SALLE) method with acetonitrile and mass spectrometry‐compatible salts followed by LC‐MS/MS analysis of trimetazidine in rat plasma is presented. It required only 50 μL of plasma and allows the use of minimal volumes of organic solvents. The seamless interface of SALLE and LC‐MS eliminated the drying‐down step and the extract was diluted and injected into an LC‐MS/MS system with a cycle time of 2.5 min/sample. The retention times of trimetazidine and IS were approximately 1.1 and 1.7 min, respectively. Calibration curves were linear over the concentration range of 0.1–100 ng/mL, which can be extended to 500 ng/mL by dilution. The intra‐ and inter‐batch precision, accuracy and the relative standard deviation were all <15%. This method was successfully applied to determine trimetazidine concentrations in rat plasma. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
A selective and sensitive liquid chromatography tandem mass spectrometry method (LC‐MS/MS) was developed and validated for the determination of cefdinir in rat plasma and urine. Following a simple protein precipitation using methanol, chromatographic separation was achieved with a run time of 10 min using a Synergi 4 µ polar‐RP 80A column (150 × 2.0 mm, 4 µm) with a mobile phase consisting of 0.1% formic acid in water and methanol (65:35, v/v) at a flow rate of 0.2 mL/min. The protonated precursor and product ion transitions for cefdinir (m/z 396.1 → 227.2) and cefadroxil, an internal standard (m/z 364.2 → 208.0) were monitored in the multiple reaction monitoring in positive ion mode. The calibration curves for plasma and urine were linear over the concentration range 10–10,000 ng/mL. The lower limit of quantification was 10 ng/mL. All accuracy values were between 95.1 and 113.0% and the intra‐ and inter‐day precisions were <13.0% relative standard deviation. The stability under various conditions in rat plasma and urine was also found to be acceptable at three concentrations. The developed method was applied successfully to the pharmacokinetic study of cefdinir after oral and intravenous administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A sensitive analytical method has been developed and validated for the quantification of L‐ergothioneine in human plasma and erythrocytes by liquid chromatography‐tandem mass spectrometry. A commercially available isotope‐labeled L‐ergothioneine‐d9 is used as the internal standard. A simple protein precipitation with acetonitrile is utilized for bio‐sample preparation prior to analysis. Chromatographic separation of L‐ergothioneine is conducted using gradient elution on Alltime C18 (150 mm × 2.1 mm, 5 µ). The run time is 6 min at a constant flow rate of 0.45 ml/min. The mass spectrometer is operated under a positive electrospray ionization condition with multiple reaction monitoring mode. The mass transitions of L‐ergothioneine and L‐ergothioneine‐d9 are m/z 230 > 127 and m/z 239 > 127, respectively. Excellent linearity [coefficient of determination (r2) ≥ 0.9998] can be achieved for L‐ergothioneine quantification at the ranges of 10 to 10 000 ng/ml, with the intra‐day and inter‐day precisions at 0.9–3.9% and 1.3–5.7%, respectively, and the accuracies for all quality control samples between 94.5 and 101.0%. This validated analytical method is suitable for pharmacokinetic monitoring of L‐ergothioneine in human and erythrocytes. Based on the determination of bio‐samples from five healthy subjects, the mean concentrations of L‐ergothioneine in plasma and erythrocytes are 107.4 ± 20.5 ng/ml and 1285.0 ± 1363.0 ng/ml, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The Thai medicinal plant Mitragyna speciosa (Kratom in Thai) is misused as a herbal drug of abuse. During studies on the main Kratom alkaloid mitragynine (MG) in rats and humans, several dehydro analogs could be detected in urine of Kratom users, which were not found in rat urine after administration of pure MG. Questions arose as to whether these compounds are formed from MG only by humans or whether they are metabolites formed from the second abundant Kratom alkaloid paynantheine (PAY), the dehydro analog of MG. Therefore, the aim of the presented study was to identify the phase I and II metabolites of PAY in rat urine after administration of the pure alkaloid. This was first isolated from Kratom leaves. Liquid chromatography–linear ion trap mass spectrometry provided detailed structure information of the metabolites in the MSn mode particularly with high resolution. Besides PAY, the following phase I metabolites could be identified: 9-O-demethyl PAY, 16-carboxy PAY, 9-O-demethyl-16-carboxy PAY, 17-O-demethyl PAY, 17-O-demethyl-16,17-dihydro PAY, 9,17-O-bisdemethyl PAY, 9,17-O-bisdemethyl-16,17-dihydro PAY, 17-carboxy-16,17-dihydro PAY, and 9-O-demethyl-17-carboxy-16,17-dihydro PAY. These metabolites indicated that PAY was metabolized via the same pathways as MG. Several metabolites were excreted as glucuronides or sulfates. The metabolism studies in rats showed that PAY and its metabolites corresponded to the MG-related dehydro compounds detected in urine of the Kratom users. In conclusion, PAY and its metabolites may be further markers for a Kratom abuse in addition of MG and its metabolites.  相似文献   

8.
Metabolism studies play an important role at various stages of drug discovery and development. Liquid chromatography combined with mass spectrometry (LC/MS) has become a most powerful and widely used analytical tool for identifying drug metabolites. The suitability of different types of mass spectrometers for metabolite profiling differs widely, and therefore, the data quality and reliability of the results also depend on which instrumentation is used. As one of the latest LC/MS instrumentation designs, hybrid ion trap/time‐of‐flight MS coupled with LC (LC‐IT‐TOF‐MS) has successfully integrated ease of operation, compatibility with LC flow rates and data‐dependent MSn with high mass accuracy and mass resolving power. The MSn and accurate mass capabilities are routinely utilized to rapidly confirm the identification of expected metabolites or to elucidate the structures of uncommon or unexpected metabolites. These features make the LC‐IT‐TOF‐MS a very powerful analytical tool for metabolite identification. This paper begins with a brief introduction to some basic principles and main properties of a hybrid IT‐TOF instrument. Then, a general workflow for metabolite profiling using LC‐IT‐TOF‐MS, starting from sample collection and preparation to final identification of the metabolite structures, is discussed in detail. The data extraction and mining techniques to find and confirm metabolites are discussed and illustrated with some examples. This paper is directed to readers with no prior experience with LC‐IT‐TOF‐MS and will provide a broad understanding of the development and utility of this instrument for drug metabolism studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A simple, sensitive, and rapid method for determination of L‐trantinterol in rat plasma was developed for the first time by using LC coupled to MS/MS based on chiral stationary phase. A baseline separation of the enantiomers of trantinterol was achieved on a Chirobiotic V column, using a mixture of acetonitrile–methanol–ammonia–acetic acid (80:20:0.01:0.02, v/v/v/v) as the mobile phase. The detection was performed on a triple‐quadrupole tandem mass spectrometer by multiple reaction monitoring mode via ESI. The calibration curve was linear in concentration range from 0.270 to 108 ng/mL in plasma with the lower limit of quantification of 0.270 ng/mL. The intra‐ and interday precision (relative standard deviation) values were within 10.9% and the accuracy (relative error) was from 2.6 to 9.2% at all quality control levels. The method has been successfully applied to a study of L‐trantinterol pharmacokinetics in rats.  相似文献   

10.
A specific, sensitive and rapid method based on high performance liquid chromatography coupled to tandem mass spectrometry (HPLC‐MS/MS) was developed for the determination of pseudo‐ginsenoside GQ in human plasma. Liquid–liquid extraction was used to isolate the analyte from biological matrix followed by injection of the extracts onto a C8 column with isocratic elution. Detection was carried out on a triple quadrupole tandem mass spectrometer (API‐4000 system) in multiple reaction monitoring mode using negative electrospray ionization. The mobile phase consisted of methanol–10 mm ammonium acetate (90:10, v/v) and the flow rate was 0.3 mL/min. The method was validated over the concentration range of 5.0–5000.0 ng/mL for plasma. Inter‐ and intra‐day precisions (relative standard deviation) were all within 15% and the accuracy (relative error) was ≤9.4%. The lower limit of quantitation was 5.0 ng/mL. The pseudo‐ginsenoside GQ was stable after 8 h at room temperature, 24 h at autosampler and three freeze–thaw cycles (from ?30 to 25 °C). The method was successfully applied to the pharmacokinetic study of pseudo‐ginsenoside GQ in healthy Chinese volunteers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Glaucine ((S)‐5,6,6a,7‐tetrahydro‐1,2,9,10‐tetramethoxy‐6‐methyl‐4H‐dibenzo [de,g]quinoline) is an isoquinoline alkaloid and main component of Glaucium flavum (Papaveraceae). It was described to be consumed as recreational drug alone or in combination with other drugs. Besides this, glaucine is used as therapeutic drug in Bulgaria and other countries as cough suppressant. Currently, there are no data available concerning metabolism and toxicological analysis of glaucine. To study both, glaucine was orally administered to Wistar rats and urine was collected. For metabolism studies, work‐up of urine samples consisted of protein precipitation or enzymatic cleavage followed by solid‐phase extraction. Samples were afterwards measured by liquid chromatography (LC) coupled to low or high‐resolution mass spectrometry (HR‐MS). The phase I and II metabolites were identified by detailed interpretation of the corresponding fragmentations, which were further confirmed by determination of their elemental composition using HR‐MS. From these data, the following metabolic pathways could be proposed: O‐demethylation at position 2, 9 and 10, N‐demethylation, hydroxylation, N‐oxidation and combinations of them as well as glucuronidation and/or sulfation of the phenolic metabolites. For monitoring a glaucine intake in case of abuse or poisoning, the O‐ and N‐demethylated metabolites were the main targets for the gas chromatography‐MS and LC‐MSn screening approaches described by the authors. Both allowed confirming an intake of glaucine in rat urine after a dose of 2 mg/kg body mass corresponding to a common abuser's dose. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Cefetamet is a potent antibiotic to treat respiratory and urinary tract infections. To improve oral bioavailability, it is administered as a prodrug, cefetamet pivoxyl hydrolyzed by esterase following absorption. A quantification method using a mass spectrometry was developed for the determination of cefetamet in human plasma. After a protein precipitation with acetonitrile, the analytes were chromatographed on a reversed‐phase C18 column and detected by a tandem mass spectrometer with electrospray ionization. The accuracy and precision of the assay were in accordance with FDA regulations for the validation of bioanalytical methods. This method was used to measure the concentrations of the cefetamet in plasma after a single oral administration of 500 mg cefetamet pivoxyl. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Tigecycline (TIG), a derivative of minocycline, is the first in the novel class of glycylcyclines and is currently indicated for the treatment of complicated skin structure and intra‐abdominal infections. A selective, accurate and reversed‐phase high‐performance liquid chromatography‐tandem mass spectrometry (HPLC‐MS/MS) method was developed for the determination of TIG in rat brain tissues. Sample preparation was based on protein precipitation and solid phase extraction using Supel‐Select HLB (30 mg/1 mL) cartridges. The samples were separated on a YMC Triart C18 column (150 mm x 3.0 mm. 3.0 µm) using gradient elution. Positive electrospray ionization (ESI+) was used for the detection mechanism with the multiple reaction monitoring (MRM) mode. The method was validated over the concentration range of 150–1200 ng/mL for rat brain tissue. The precision and accuracy for all brain analyses were within the acceptable limit. The mean extraction recovery in rat brain was 83.6%. This validated method was successfully applied to a pharmacokinetic study in female Sprague Dawley rats, which were given a dose of 25 mg/kg TIG intraperitoneally at various time‐points. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Crizotinib is a small molecule inhibitor of anaplastic lymphoma kinase (ALK) and can be used to treat ALK‐positive nonsmall‐cell lung cancer. A rapid and simple high‐performance liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the quantification of crizotinib in rat plasma using a chemical synthetic compound buspirone as the internal standard (IS). The plasma samples were pretreated by a simple protein precipitation with methanol–acetonitrile (1:1, v/v). Chromatographic separation was successfully achieved on an Agilent Zorbax XDB C18 column (2.1 × 50 mm, 3.5 µm). The gradient elution system was composed of 0.1% formic acid aqueous solution and 0.1% formic acid in methanol solution. The flow rate was set at 0.50 mL/min. The multiple reaction monitoring was based on the transitions of m/z = 450.3 → 177.1 for crizotinib and 386.2 → 122.2 for buspirone (IS). The assay was successfully validated to demonstrate the selectivity, matrix effect, linearity, lower limit of quantification, accuracy, precision, recovery and stability according to the international guidelines. The lower limit of quantification was 1.00 ng/mL in 50 μL of rat plasma. This LC‐MS/MS assay was successfully applied to the quantification and pharmacokinetic study of crizotinib in rats after intravenous and oral administration of crizotinib. The oral absolute bioavailability of crizotinib in rats was 68.6 ± 9.63%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Studies are described on the phase I and II metabolism and the toxicological analysis of the piperazine-derived designer drug 1-(3-trifluoromethylphenyl)piperazine (TFMPP) in rat urine using gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS). The identified metabolites indicated that TFMPP was extensively metabolized, mainly by hydroxylation of the aromatic ring and by degradation of the piperazine moiety to N-(3-trifluoromethylphenyl)ethylenediamine, N-(hydroxy-3-trifluoromethylphenyl)ethylenediamine, 3-trifluoromethylaniline, and hydroxy-3-trifluoromethylaniline. Phase II reactions included glucuronidation, sulfatation and acetylation of phase I metabolites. The authors' systematic toxicological analysis (STA) procedure using full-scan GC/MS after acid hydrolysis, liquid-liquid extraction and microwave-assisted acetylation allowed the detection of TFMPP and its above-mentioned metabolites in rat urine after single administration of a dose calculated from the doses commonly taken by drug users. Assuming similar metabolism, the described STA procedure should be suitable for proof of an intake of TFMPP in human urine.  相似文献   

16.
A direct injection liquid chromatography–electrospray ionization–tandem mass spectrometric method (LC‐ESI‐MS/MS) was developed and validated for the rapid and simple determination of 13 phenylalkylamine derivatives. Eight deuterium‐labeled compounds were prepared for use as internal standards (ISs) to quantify the analytes. Urine samples mixed with ISs were centrifuged, filtered through 0.22 µm filters and then injected directly into the LC‐ESI‐MS/MS system. The mobile phase was composed of 0.2% formic acid and 2 mM ammonium formate in distilled water and 0.2% formic acid and 2 mM ammonium formate in acetonitrile. The analytical column was a Capcell Pak MG‐II C18 (150 × 2.0 mm i.d., 5 µm, Shiseido). Separation and detection of the analytes were accomplished within 10 min. The linear ranges were 5–750 ng/mL (ephedrine and fenfluramine), 10–750 ng/mL (3,4‐methylenedioxyamphetamine, phendimetrazine, methamphetamine, 3,4‐methylenedioxyethylamphetamine and benzphetamine), 20–750 ng/mL (norephedrine, amphetamine, phentermine and ketamine) and 30–1000 ng/mL (3,4‐methylenedioxymethamphetamine and norketamine), with determination coefficients, R2, ≥ 0.9967. The intra‐day and inter‐day precisions were within 19.1%. The intra‐day and inter‐day accuracies ranged from ?16.0 to 18.7%. The lower limits of quantification for all the analytes were lower than 26.5 ng/mL. The applicability of the method was examined by analyzing urine samples from drug abusers (n = 30). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
This report details a method using liquid chromatography–tandem mass spectrometry (LC‐MS/MS) that allows one to determine the concentration of an atypical anticancer drug, enzalutamide, in rat plasma. Specifically, this method involves the addition of an acetonitrile and bicalutamide (internal standard) solution to plasma samples. Following centrifugation of this mixture, an aliquot of the supernatant was directly injected into the LC‐MS/MS system. Separation was achieved using a column packed with octadecylsilica (5 µm, 2.1 × 50 mm) with 10 mM ammonium acetate in acetonitrile as the mobile phase; detection was accomplished using MS/MS by multiple‐reaction monitoring via an electrospray ionization source. This method demonstrated a linear standard curve (r = 0.997) over a concentration range of 0.001–1 µg/mL, as well as an intra‐ and inter‐assay precision of 2.7 and 5.1%, respectively, and an accuracy range from 100.8 to 105.6%. The lower limit of quantification was 1.0 ng/mL in 50 μL of rat plasma sample. We also demonstrated that this analytical method could be successfully applied to the pharmacokinetic study of enzalutamide in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A rapid high‐performance liquid chromatography–tandem mass spectrometry method has been developed and validated for simultaneous measurement of venlafaxine and O‐desmethylvenlafaxine in human plasma using fluoxetine as an internal standard. In the liquid–liquid extraction method, compounds and internal standard were extracted from plasma using methyl tertiary butyl ether as an extraction solvent. The HPLC separation of the analytes was performed on a Zorbax SB‐C18, 50 × 4.6 mm, 5 µm column, using a isocratic elution program using a mobile phase consisting of HPLC‐grade methanol: 5 mm ammonium acetate (80:20 v/v) at a flow‐rate of 1.0 mL/min with a total runtime of 3.0 min. The proposed method has been validated with a linear range of 4–400 ng/mL for venlafaxine and 5–500 ng/mL for O‐desmethyl venlafaxine. The method was applied for a bio‐equivalence study of 75 mg tablets formulation in 32 Indian male healthy subjects under fasting conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Astragaloside III (AST III), a naturally occurring saponin compound isolated from Radix Astragali, has been demonstrated to have anti‐gastric ulcer, immunomodulatory and antitumor effects. To evaluate its pharmacokinetics in rats, a rapid, sensitive and specific high‐performance liquid chromatography–tandem mass spectrometric (HPLC‐MS/MS) method has been developed and validated for the quantification of astragaloside III in rat plasma. Samples were pretreated using a simple protein precipitation with methanol–acetonitrile (50:50, v/v) and the chromatographic separation was performed on a C18 column by a gradient elution using a mobile phase consisting of water containing 0.1% formic acid and acetonitrile containing 0.1% formic acid. Astragaloside III and the internal standard (buspirone) were detected using a tandem mass spectrometer in positive multiple reaction monitoring mode. Method validation revealed excellent linearity over the range of 5.00–5000 ng/mL together with satisfactory intra‐ and inter‐day precision, accuracy and recovery. Stability testing showed that astragaloside III spiked into rat plasma was stable for 24 h at 20°C temperature, for up to 30 days at ?80°C, and during three freeze–thaw cycles. The method was successfully used to investigate the pharmacokinetic profile of AST III after oral (10 mg/kg) and intravenous (1.0 mg/kg) administration in rats. The oral absolute bioavailability of AST III was calculated to be 4.15 ± 0.67% with an elimination half‐life value of 2.13 ± 0.11 h, suggesting its poor absorption and/or strong metabolism in vivo. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A rapid, sensitive and rugged solid‐phase extraction ultra performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS) method was developed for determination of paroxetine in human plasma. The procedure for sample preparation includes simple SPE extraction procedure coupled with Hypersil Gold C18 column (100 mm ? 2.1 mm, i.d., 1.9 μm) with isocratic elution at a flow‐rate of 0.350 mL/min and fluoxetine was used as the internal standard. The analysis was performed on a triple‐quadrupole tandem mass spectrometer by multiple reactions monitoring mode via electrospray ionization. Using 500 μL plasma, the methods were validated over the concentration range 0.050–16.710 ng/mL for paroxetine, with a lower limit of quantification of 0.050 ng/mL. The intra‐ and inter‐day precision and accuracy of the quality control samples were within 10.0%. The recovery was 69.2 and 74.4% for paroxetine and fluoxetine respectively. Total run time was only 1.9 min. The method was highly reproducible and gave peaks with excellent chromatography properties. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号