首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate that zinc oxide can catalyze the growth of single-walled carbon nanotubes (SWNTs) with high efficiency by a chemical vapor deposition process. The zinc oxide nanocatalysts, prepared using a diblock copolymer templating method and characterized by atomic force microscopy (AFM), were uniformly spaced over a large deposition area with an average diameter of 1.7 nm and narrow size distribution. Dense and uniform SWNTs films with high quality were obtained by using a zinc oxide catalyst, as characterized by scanning electron microscopy (SEM), Raman spectroscopy, AFM, and high-resolution transmission electron microscopy (HRTEM).  相似文献   

2.
Single-walled carbon nanotubes (SWNTs) encapsulating C70s, so-called C70 peapods, were synthesized in high yield by a vapor-phase doping method. Raman spectra, high resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED) measurement indicate that the tube diameter is one of the important factors to determine the orientation of C70 molecules inside the SWNTs. SWNTs with different diameters give different alignment of C70 molecules. The lying orientation is favorable over the standing orientation in thin nanotube, i.e. 1.36 nm nanotubes, whereas the standing orientation is favorable in thick nanotubes, i.e. 1.49 and 1.61 nm nanotubes.  相似文献   

3.
The present study is focused on the synthesis and investigation of the nanocomposite CuI@SWNT obtained by the filling of metallic single-walled carbon nanotubes (SWNTs) (inner diameter 1–1.4 nm) by wide-gap semiconducting CuI nanocrystals using so-called capillary technique. The method is based on the impregnation of pre-opened SWNTs by molten CuI in vacuum with subsequent slow cooling to room temperature. SWNTs and CuI@SWNT nanocomposites were studied by nitrogen capillary adsorption method, EDX microanalysis, HRTEM microscopy and Raman spectroscopy. The changing of electronic properties of CuI@SWNT as compare to row nanotubes was observed.  相似文献   

4.
Self-assembled monolayer (SAM) techniques were used to adsorb 4-aminothiophenol (4-ATP) on platinum electrodes in order to obtain an amino-terminated SAM as the base for the chemical attachment of single-wall carbon nanotubes (SWCNTs). A physico-chemical, morphological and electrochemical characterizations of SWCNTs attached onto the modified Pt electrodes was done by using reflection-absorption infrared spectroscopy (RAIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and cyclic voltammetry (CV) techniques. The SWNTs/4-ATP/Pt surface had regions of small, medium, and large thickness of carbon nanotubes with heights of 100-200 nm, 700 nm to 1.5 μm, and 1.0-3.0 μm, respectively. Cyclic voltammetries (CVs) in sulfuric acid demonstrated that attachment of SWNTs on 4-ATP/Pt is markedly stable, even after 30 potential cycles. CV in ruthenium hexamine was similar to bare Pt electrodes, suggesting that SWNTs assembly is similar to a closely packed microelectrode array.  相似文献   

5.
Iron, cobalt and a mixture of iron and cobalt incorporated mesoporous MCM-41 molecular sieves were synthesised by hydrothermal method and used to investigate the rules governing their nanotube producing activity. The catalysts were characterised by XRD and N2 sorption studies. The effect of the catalysts has been investigated for the production of carbon nanotubes at an optimised temperature 750 °C with flow rate of N2 and C2H2 is 140 and 60 ml/min, respectively for a reaction time 10 min. Fe-Co-MCM-41 catalyst was selective for carbon nanotubes with low amount of amorphous carbon with increase in single-walled carbon nanotubes (SWNTs) yield at 750 °C. Formation of nanotubes was studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Transmission electron microscope and Raman spectrum was used to follow the quality and nature of carbon nanotubes formed and the graphitic layers and disordered band, which shows the clear evidence for the formation of SWNTs, respectively. The result propose that the diameter of the nanotubes in the range of 0.78-1.35 nm. Using our optimised conditions for this system, Fe-Co-MCM-41 showed the best results for selective SWNTs with high yield when compared with Fe-MCM-41 and Co-MCM-41.  相似文献   

6.
In this paper, we report that ruthenium is an active and efficient catalyst for growth of single-walled carbon nanotubes (SWNTs) by a chemical vapor deposition (CVD) process for the first time. High density random and horizontally superlong well-oriented SWNTs on substrate can be fabricated via CH4 or EtOH as carbon source under suitable conditions. Scanning and transition electron microscopy investigations, Raman spectroscopy and atomic force microscopy measurements show the tubular structure, the high crystallinity, and the properties of the grown nanotubes. The results show that the SWNTs from ruthenium have better structural uniformity with less defects and provides an alternative catalyst for SWNTs growth. The successful growth of SWNTs by Ru catalyst provides new experimental information for understanding the growth mechanism of SWNTs, which may be helpful for their controllable synthesis.  相似文献   

7.
Interaction of sol–gel synthesized Ce–Ag‐codoped ZnO (CSZO) nanocrystals with (E)‐1‐(naphthalen‐1‐yl)‐2‐styryl‐1H‐phenanthro[9,10‐d]imidazole has been analysed. The synthesized nanocrystals and their composites with naphthyl styryl phenanthrimidazole have been characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X‐ray spectroscopy, X‐ray diffractometry, X‐ray photoelectron spectroscopy (XPS) lifetime and Fourier transform infrared spectroscopy and cyclic voltammetry. XPS shows doped silver and cerium in Ag0 and Ce4+ states, respectively. SEM and TEM images of CSZO nanoparticles show that they appear to be 3D trapezoid and cocoon‐like shape. The selected area electron diffraction pattern supports the nanocrystalline character of the synthesized material. The percentages of doping of cerium and silver in CSZO are 0.54 (at.) and 0.34 (at.), respectively. From the energy levels of the materials used in the imidazole–CSZO composite, the dominant CT direction has been analysed. Theoretical investigation shows that the binding energy and energy gap of the imidazole composites are highly dependent on the nature of the silver oxide cluster and that charge transfer in the imidazole–Ag4O4 composite is faster than the same in other composites. Molecular docking technique has also been carried out to understand the imidazole–DNA interactions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The channels of single-walled carbon nanotubes (SWNTs) are filled with metallic silver. The synthesized nanocomposites are studied by Raman spectroscopy and optical absorption spectroscopy, and these data indicate a substantial modification of the electronic structure of the nanotubes upon their filling. Moreover, X-ray photoelectron spectroscopy shows that the incorporation of the metal leads to a change in the work function of SWNTs due to the Fermi level upshift and to the transfer of an electron density from inserted nanoparticles to the nanotube walls. Thus, the filling of the channels with silver results in donor doping of the nanotubes.  相似文献   

9.
A novel one-step process using potassium persulfate (KPS) as oxidant is proposed in this paper to prepare water-soluble single-walled carbon nanotubes (SWNTs). The process without the need for organic solvents and acids is a low-cost, eco-friendly, facile method. Morphology observation by atomic force microscopy (AFM) indicates that the KPS-treated SWNTs were effectively debundled without obvious shortening in their length. The functional groups and thermal stability of the treated SWNTs were analyzed by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). XPS results show that several functional groups such as potassium carboxylate (-COOK), carbonyl (-CO) and hydroxyl (-C-OH) groups were formed on the surfaces of the SWNTs, while the TGA results reveal that the quantity of the functional groups can reach to approximately 20%.  相似文献   

10.
A simple and efficient method of chemical functionalization of both single and multiwalled carbon nanotubes has been discussed to give enhanced water solubility by rapidly and efficiently generating an appreciable amount of hydrophilic functional groups using microwave radiation. Surface functionalization containing more than 30 wt% of oxygen has been achieved, resulting into solubility of 2–5 mg/mL. Further covalent functionalization of such soluble SWNTs provides a remarkable degree of aniline functionalization through amidation, where the formation of polyaniline has been avoided. Functionalization of SWNTs is confirmed by techniques like electron microscopy, Fourier transform infrared spectroscopy, thermogravimetry, Raman spectroscopy, cyclic voltammetry and impedance spectroscopy. Electrochemical analysis suggests an enhanced double layer capacitance (110 F/g) of nanotubes after microwave treatment. Aniline functionalization of SWNTs shows possible variations on the nanotube topography with concomitant formation of a dynamic polymer layer on the nanotube surface.  相似文献   

11.
Single-walled carbon nanotubes (SWNTs) were synthesized by disproportionation of carbon monoxide on an aerogel-supported Fe/Mo catalyst. A simple acidic treatment followed by an oxidation process produced a high purity (>99%) of SWNTs. The nanotubes obtained are bundled SWNTs and free of amorphous-carbon coating. Several factors that affect the yield and the quality of the SWNTs were also studied. This method shows great promise for large-scale production of SWNTs. Received: 30 August 2001 / Accepted: 3 December 2001 / Published online: 4 March 2002  相似文献   

12.
High-quality single-walled carbon nanotubes (SWNTs) are synthesized by chemical vapor deposition (CVD) of methane on silicon-dioxide substrates at controlled locations using patterned catalytic islands. With the synthesized nanotube chips, microfabrication techniques are used to reliably contact individual SWNTs and obtain low contact resistance. The combined chemical synthesis and microfabrication approaches enable systematic characterization of electron transport properties of a large number of individual SWNTs. Results of electrical properties of representative semiconducting and metallic SWNTs are presented. The lowest two-terminal resistance for individual metallic SWNTs (≈5 μm long) is ≈16.5 kΩ measured at 4.2 K. Received: 17 May 1999 / Accepted: 18 May 1999 / Published online: 14 July 1999  相似文献   

13.
We reported a simple method to fabricate polymer nanocomposites with single-walled carbon nanotubes (SWNTs) having exceptional alignment and improved mechanical properties. The composite films were fabricated by casting a suspension of single walled carbon nanotubes in a solution of thermoplastic polyurethane and tetrahydrofuran. The orientation as well as dispersion of nanotubes was determined by scanning electron microscopy, transmission electron microscopy and polarized Raman spectroscopy. The macroscopic alignment probably results from solvent-polymer interaction induced orientation of soft segment chain during swelling and moisture curing. The tensile behavior of the aligned nanotube composite film was also studied. At a 0.5 wt.% nanotube loading, a 1.9-fold increase in Young's modulus was achieved.  相似文献   

14.
Single-walled carbon nanotubes (SWCNTs) and few-walled carbon nanotubes (FWCNTs) have been selectively synthesized by plasma enhanced chemical vapor deposition at a relative low temperature (550 °C) by tuning the thickness of iron catalyst. The parametric study and the optimization of the nanotube growth were undertaken by varying inductive power, temperature, catalyst thickness, and plasma to substrate distance. When an iron film of 3-5 nm represented the catalyst thickness for growing FWCNT arrays, SWCNTs were synthesized by decreasing the catalyst thickness to 1 nm. The nanotubes were characterized by field emission scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. Electron field emission properties of the nanotubes indicate that the SWCNTs exhibit lower turn-on field compared to the FWCNTs, implying better field emission performance.  相似文献   

15.
碳纳米管晶格振动模及拉曼光谱的研究进展   总被引:7,自引:0,他引:7  
本文介绍了碳纳米管的结构特征和晶格振动模的理论研究 ,综述了不同方法生长的多壁碳纳米管和单壁碳纳米管拉曼光谱的研究进展。另外 ,还简单描述了单壁碳纳米管的应用前景  相似文献   

16.
The capability of anti‐Stokes/Stokes Raman spectroscopy to evaluate chemical interactions at the interface of a conducting polymer/carbon nanotubes is demonstrated. Electrochemical polymerisation of the monomer 3,4‐ethylenedioxythiophene (EDOT) on a Au support covered with a single‐walled carbon nanotube (SWNT) film immersed in a LiClO4/CH3CN solution was carried out. At the resonant optical excitation, which occurs when the energy of the exciting light coincides with the energy of an electronic transition, poly(3,4‐ethylenedioxythiophene) (PEDOT) deposited electrochemically as a thin film of nanometric thickness on a rough Au support presents an abnormally intense anti‐Stokes Raman spectrum. The additional increase in Raman intensity in the anti‐Stokes branch observed when PEDOT is deposited on SWNTs is interpreted as resulting from the excitation of plasmons in the metallic nanotubes. A covalent functionalisation of SWNTs with PEDOT both in un‐doped and doped states takes place when the electropolymerisation of EDOT, with stopping at +1.6 V versus Ag/Ag+, is performed on a SWNT film deposited on a Au plate. The presence of PEDOT covalently functionalised SWNTs is rationalised by (1) a downshift by a few wavenumbers of the polymer Raman line associated with the symmetric C C stretching mode and (2) an upshift of the radial breathing modes of SWNTs, both variations revealing an interaction between SWNTs and the conjugated polymer. Raman studies performed at different excitation wavelengths indicate that the resonant optical excitation is the key condition to observe the abnormal anti‐Stokes Raman effect. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Single-walled carbon nanotubes (SWNTs)/polyaniline (PANI) composite films with good uniformity and dispersion were prepared by electrochemical polymerization of aniline containing well-dissolved SWNTs. The composite films were dispersed Pt by electrodeposition technique. The presence of SWNTs and platinum in the composite film was confirmed by XRD analysis and scanning electron microscopy (SEM). Four-point probe investigation and electrochemical impedance spectroscopy (EIS) revealed that the well arrangement of PANI coated SWNTs in these films enhanced electric conductivity and facilitated the charge-transfer of the composite films. Cyclic voltammogram (CV) and chronoamperogram showed that Pt-modified SWNT/PANI composite film performs higher electrocatalytic activity and better long-term stability than Pt-modified pure PANI film toward formaldehyde oxidation. The results imply that the SWNT/PANI composite film as a promising support material improves the electrocatalytic activity for formaldehyde oxidation greatly.  相似文献   

18.
Single-wall carbon nanotubes (SWNTs) were synthesized by the irradiation of 20-ms CO2 laser pulses onto a graphite–Co/Ni target at room temperature. We investigated the effect of laser power density (10–150 kW/cm2) and ambient Ar gas pressure (150–760 Torr) on the abundance of SWNTs with lengths of up to about 200 nm in soot-like carbonaceous deposits. For a constant power density (30 kW/cm2), depending on the Ar gas pressure, SWNTs with diameters of 1.2–1.4 nm were synthesized. Expansion behavior and temperature-fall rates of clusters and/or particles in laser plumes were also analyzed by high-speed video imaging and temporally and spatially resolved emission spectroscopy. The temperature-fall rates were estimated to be 171–427 K/ms. The SWNT growth on the time scale of a few milliseconds appeared to be related to some features of condensing clusters and/or particles, including resident densities, collision frequencies and temperatures. Received: 16 July 2001 / Accepted: 23 July 2001 / Published online: 30 August 2001  相似文献   

19.
Hydrogen storage in sonicated carbon materials   总被引:6,自引:0,他引:6  
The hydrogen storage in purified single-wall carbon nanotubes (SWNTs), graphite and diamond powder was investigated at room temperature and ambient pressure. The samples were sonicated in 5 M HNO3 for various periods of time using an ultrasonic probe of the alloy Ti-6Al-4V. The goal of this treatment was to open the carbon nanotubes. The maximum value of overall hydrogen storage was found to be 1.5 wt %, as determined by thermal desorption spectroscopy. The storage capacity increases with sonication time. The sonication treatment introduces particles of the Ti alloy into the samples, as shown by X-ray diffraction, transmission electron microscopy, and chemical analysis. All of the hydrogen uptake can be explained by the assumption that the hydrogen is only stored in the Ti-alloy particles. The presence of Ti-alloy particles does not allow the determination of whether a small amount of hydrogen possibly is stored in the SWNTs themselves, and the fraction of nanotubes opened by the sonication treatment is unknown. Received: 18 December 2000 / Accepted: 18 December 2000 / Published online: 9 February 2001  相似文献   

20.
A carbonaceous material containing single-wall carbon nanotubes (SWNTs) has been synthesized by arc-discharge evaporation of graphite with a catalytic additive of nickel and cobalt powders. The synthesized SWNTs were purified from an amorphous carbon component (soot) and the catalyst particles by boiling in nitric acid. A comparison of the X-ray fluorescence spectra measured before and after this treatment showed that acid etching significantly decreased the content of soot in the material. The material enriched with SWNTs is characterized by a reduced threshold for the appearance of the field emission current, which is explained by a decrease in the screening effect of soot. The current-voltage characteristics of SWNTs exhibit a hysteresis, which is suggested to be due to the adsorption of molecules and radicals on the surface and at the ends of carbon nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号