首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
H‐shaped quintopolymer containing different five blocks: poly(ε‐caprolactone) (PCL), polystyrene (PS), poly(ethylene glycol) (PEG), and poly(methyl methacrylate) (PMMA) as side chains and poly(tert‐butyl acrylate) (PtBA) as a main chain was simply prepared from a click reaction between azide end‐functionalized PCL‐PS‐PtBA 3‐miktoarm star terpolymer and PEG–PMMA‐block copolymer with alkyne at the junction point, using Cu(I)/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as a catalyst in DMF at room temperature for 20 h. The H‐shaped quintopolymer was obtained with a number–average molecular weight (Mn) around 32,000 and low polydispersity index (Mw/Mn) 1.20 as determined by GPC analysis in THF using PS standards. The click reaction efficiency was calculated to have 60% from 1H NMR spectroscopy. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4459–4468, 2008  相似文献   

2.
The double click reactions (Cu catalyzed Huisgen and Diels–Alder reactions) were used as a new strategy for the preparation of well‐defined heterograft copolymers in one‐pot technique. The synthetic strategy to the various stages of this work is outlined: (i) preparing random copolymers of styrene (St) and p‐chloromethylstyrene (CMS) (which is a functionalizable monomer) via nitroxide mediated radical polymerization (NMP); (ii) attachment of anthracene functionality to the preformed copolymer by the o‐etherification procedure and then conversion of the remaining ? CH2Cl into azide functionality; (iii) by using double click reactions in one‐pot technique, maleimide end‐functionalized poly(methyl methacrylate) (PMMA‐MI) via atom transfer radical polymerization (ATRP) of MMA and alkyne end‐functionalized poly (ethylene glycol) (PEG‐alkyne) were introduced onto the copolymer bearing pendant anthryl and azide moieties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6969–6977, 2008  相似文献   

3.
3‐Arm star‐block copolymers, (polystyrene‐b‐poly(methyl methacrylate))3, (PS‐b‐PMMA)3, and (polystyrene‐b‐poly(ethylene glycol))3, (PS‐b‐PEG)3, are prepared using double‐click reactions: Huisgen and Diels–Alder, with a one‐pot technique. PS and PMMA blocks with α‐anthracene‐ω‐azide‐ and α‐maleimide‐end‐groups, respectively, are achieved using suitable initiators in ATRP of styrene and MMA, respectively. However, PEG obtained from a commercial source is reacted with 3‐acetyl‐N‐(2‐hydroxyethyl)‐7‐oxabicyclo[2.2.1]hept‐5‐ene‐2‐carboxamide (7) to give furan‐protected maleimide‐end‐functionalized PEG. Finally, PS/PMMA and PS/PEG blocks are linked efficiently with trialkyne functional linking agent 1,1,1‐tris[4‐(2‐propynyloxy)phenyl]‐ethane 2 in the presence of CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) at 120 °C for 48 h to give two samples of 3‐arm star‐block copolymers. The results of the peak splitting using a Gaussian deconvolution of the obtained GPC traces for (PS‐b‐PMMA)3 and (PS‐b‐PEG)3 displayed that the yields of target 3‐arm star‐block copolymers were found to be 88 and 82%, respectively. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7091–7100, 2008  相似文献   

4.
Well‐defined linear α‐anthracene‐ω‐maleimide functionalized polystyrene (l‐Anth‐PS‐MI) and linear α‐alkyne‐ω‐maleimide functionalized poly(tert‐butyl acrylate) (l‐alkyne‐PtBA‐MI) homopolymers, and linear α‐anthracene‐ω‐maleimide functionalized PS‐b‐PtBA (l‐Anth‐PS‐b‐PtBA‐MI) and linear α‐anthracene‐ω‐maleimide functionalized PS‐b‐poly(ε‐caprolactone) (PCL) (l‐Anth‐PS‐b‐PCL‐MI) block copolymers were obtained via combination of atom transfer radical polymerization (ATRP)/ring opening polymerization (ROP) and azide‐alkyne click reaction strategy. Subsequently, these linear homo and block copolymers were efficiently clicked via Diels‐Alder reaction to give their corresponding cyclic homo and block copolymers at reflux temperature of toluene for 48 h under 7–4 × 10?5 M conditions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

5.
The preparation of 3‐miktoarm star terpolymers using nitroxide mediated radical polymerization (NMP), ring opening polymerization (ROP), and click reaction [3 + 2] are carried out by applying two types of one‐pot technique. In the first one‐pot technique, NMP of styrene (St), ROP of ε‐caprolactone (ε‐CL), and [3 + 2] click reaction (between azide end‐functionalized poly(ethylene glycol) (PEG‐N3)/or azide end‐functionalized poly(methyl methacrylate) (PMMA‐N3) and alkyne) are carried out in the presence of 2‐(hydroxymethyl)‐2‐methyl‐3‐oxo‐3‐(2‐phenyl‐2‐(2,2,6,6‐tetramethylpiperidin‐1‐yloxy)ethoxy) propyl pent‐4‐ynoate, 2 , as an initiator for 48 h at 125 °C (one‐pot/one‐step). As a second technique, NMP of St and ROP of ε‐CL were conducted using 2 as an initiator for 20 h at 125 °C, and subsequently PEG‐N3 or azide end‐functionalized poly(tert‐butyl acrylate (PtBA‐N3) was added to the polymerization mixture, followed by a click reaction [3 + 2] for 24 h at room temperature (one‐pot/two‐step). The 3‐miktoarm star terpolymers, PEG‐poly(ε‐caprolactone)(PCL)‐PS, PtBA‐PCL‐PS and PMMA‐PCL‐PS, were recovered by a simple precipitation in methanol without further purification. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3588–3598, 2007  相似文献   

6.
A facile approach to synthesis of ABCDE‐type H‐shaped quintopolymer comprising polystyrene (PSt, C) main chain and poly(ethylene glycol) (PEG, A), poly(ε‐caprolactone) (PCL, B), poly(L ‐lactide) (PLLA, D), and poly(acrylic acid) (PAA, E) side chains was described, and physicochemical properties and potential applications as drug carriers of copolymers obtained were investigated. Azide‐alkyne cycloaddition reaction and hydrolysis were used to synthesize well‐defined H‐shaped quintopolymer. Cytotoxicity studies revealed H‐shaped copolymer aggregates were nontoxic and biocompatible, and drug loading and release properties were affected by macromolecular architecture, chemical composition, and pH value. The release rate of doxorubicin from copolymer aggregates at pH 7.4 was decreased in the order PAA‐b‐PLLA > H‐shaped copolymer > PEG‐PCL‐PSt star, and the release kinetics at lower pH was faster. The H‐shaped copolymer aggregates have a potential as controlled delivery vehicles due to their excellent storage stability, satisfactory drug loading capacity, and pH‐sensitive release rate of doxorubicin. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
A combination of ring opening metathesis polymerization (ROMP) and click chemistry approach is first time utilized in the preparation of 3‐miktoarm star terpolymer. The bromide end‐functionality of monotelechelic poly(N‐butyl oxanorbornene imide) (PNBONI‐Br) is first transformed to azide and then reacted with polystyrene‐b‐poly(methyl methacrylate) copolymer with alkyne at the junction point (PS‐b‐PMMA‐alkyne) via click chemistry strategy, producing PS‐PMMA‐PNBONI 3‐miktoarm star terpolymer. PNBONI‐Br was prepared by ROMP of N‐butyl oxanorbornene imide (NBONI) 1 in the presence of (Z)‐but‐2‐ene‐1,4‐diyl bis(2‐bromopropanoate) 2 as terminating agent. PS‐b‐PMMA‐alkyne copolymer was prepared successively via nitroxide‐mediated radical polymerization (NMP) of St and atom transfer radical polymerization (ATRP) of MMA. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 497–504, 2009  相似文献   

8.
Heteroarm H‐shaped terpolymers, (polystyrene)(poly(methyl methacrylate))‐ poly(tert‐butyl acrylate)‐(polystyrene)(poly(methyl methacrylate)), (PS)(PMMA)‐PtBA‐(PMMA)(PS), and, (PS)(PMMA)‐poly(ethylene glycol)(PEG)‐(PMMA)(PS), through click reaction strategy between PS‐PMMA copolymer (as side chains) with an alkyne functional group at the junction point and diazide end‐functionalized PtBA or PEG (as a main chain). PS‐PMMA with alkyne functional group was prepared by sequential living radical polymerizations such as the nitroxide mediated (NMP) and the metal mediated‐living radical polymerization (ATRP) routes. The obtained H‐shaped polymers were characterized by using 1H‐NMR, GPC, DSC, and AFM measurements. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1055–1065, 2007  相似文献   

9.
10.
Two complementary tandem strategies based on the one‐pot combination of click chemistry and atom transfer radical polymerization (ATRP) are studied. Initially, functionalized random copolymers are obtained by copolymerization of methyl methacrylate and propargyl methacrylate simultaneously to the click chemistry coupling of a monofunctional azide. Then, an approach based on the copolymerization of methyl methacrylate and 11‐azido‐undecanoyl methacrylate simultaneously to the click chemistry coupling of a monofunctional alkyne is also investigated. For both the approach, polymerization and click chemistry coupling are catalyzed by CuBr and bipyridine (Bipy) in diphenylether at 90 °C. The [Bipy]/[CuBr] ratio is varied from 2 to 25 and the ratio of functionalized comonomer from 20 to 70 mol %. Both the tandem strategies proceed with good yields (50–80%) and allow a good control over the characteristics of the resulting random copolymers and macromolecular brushes (Mn ~ 15,000–40,000 g/mol and PDI ~ 1.3–2.0) as well as quantitative click functionalization as characterized by 1H NMR and size exclusion chromatography analyses. Although the click process is generally completed at the early stage of the process, the rate of polymerization depends on the amount of bipyridine involved. It was found that extending most of the polymerization process out of the click reaction regime results in a better control of the polymerization, preventing the significant occurrence of side reactions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3803–3813, 2009  相似文献   

11.
H‐shaped ABCAB terpolymers composed of polystyrene (PS) (A), poly(ethylene oxide) (PEO) (B), and poly(tert‐butyl acrylate) (PtBA) (C) were prepared by atom transfer radical coupling reaction using ABC star terpolymers as precursors, CuBr and N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as catalysts, and nanosize copper as the reducing agent. The synthesis of 3‐miktoarm star terpolymer PS‐PEO‐(PtBA‐Br) involved following steps: (1) the preparation of PS with an active and an ethoxyethyl‐ptotected hydroxyl group at the same end; (2) the preparation of diblock copolymer PS‐b‐PEO with ethoxyethyl‐protected group at the junction point through the ring‐opening polymerization (ROP) of EO; (3) after de‐protection of ethoxyethyl group and further modification of hydroxyl group, tBA was polymerized by atom transfer radical polymerization using PS‐b‐PEO with 2‐bromoisobutyryl functional group as macroinitiator. The H‐shaped terpolymer could be successfully formed by atom transfer radical coupling reaction in the presence of small quantity of styrene, CuBr/PMDETA, and Cu at 90 °C. The copolymers were characterized by SEC, 1H NMR, and FTIR in detail. The optimized coupling temperature is 90 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 59–68, 2009  相似文献   

12.
In this study, an equimolar mixture of oxanorbornenyl‐anthracene (ONB‐anthracene), oxanorbornenyl‐bromide (ONB‐Br), and oxanorbornenyl tosylate (ONB‐OTs) was polymerized via ring opening metathesis polymerization using the first generation Grubbs' catalyst in CH2Cl2 at room temperature to form poly(ONB‐anthracene‐co‐ONB‐Br‐co‐ONB‐OTs)10 copolymer as a main backbone. Next, this main backbone was sequentially clicked with a furan protected maleimide‐terminated poly(methyl methacrylate), 2,2,6,6‐tetramethyl‐1‐piperidinyloxy‐terminated poly(ethylene glycol), and alkyne‐terminated poly(ε‐caprolactone) (PCL20‐alkyne) via Diels–Alder, nitroxide radical coupling, and copper‐catalyzed azide‐alkyne cycloaddition, respectively, to yield a poly(ONB‐g‐PMMA‐co‐ONB‐g‐PEG‐co‐ONB‐g‐PCL)10 heterograft brush copolymer © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
The H‐shaped copolymers, [poly(L ‐lactide)]2polystyrene [poly(L ‐lactide)]2, [(PLLA)2PSt(PLLA)2] have been synthesized by combination of atom transfer radical polymerization (ATRP) with cationic ring‐opening polymerization (CROP). The first step of the synthesis is ATRP of St using α,α′‐dibromo‐p‐xylene/CuBr/2,2′‐bipyridine as initiating system, and then the PSt with two bromine groups at both chain ends (Br–PSt–Br) were transformed to four terminal hydroxyl groups via the reaction of Br–PSt–Br with diethanolamine in N,N‐dimethylformamide. The H‐shaped copolymers were produced by CROP of LLA, using PSt with four terminal hydroxyl groups as macroinitiator and Sn(Oct)2 as catalyst. The copolymers obtained were characterized by 1H NMR spectroscopy and gel permeation chromatography. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2794–2801, 2006  相似文献   

14.
We report an efficient way, sequential double click reactions, for the preparation of brush copolymers with AB block‐brush architectures containing polyoxanorbornene (poly (ONB)) backbone and poly(ε‐caprolactone) (PCL), poly(methyl methacrylate) (PMMA) or poly(tert‐butyl acrylate) (PtBA) side chains: poly(ONB‐g‐PMMA)‐b‐poly(ONB‐g‐PCL) and poly(ONB‐g‐PtBA)‐b‐poly(ONB‐g‐PCL). The living ROMP of ONB affords the synthesis of well‐defined poly(ONB‐anthracene)20b‐poly (ONB‐azide)5 block copolymer with anthryl and azide pendant groups. Subsequently, well‐defined linear alkyne end‐functionalized PCL (PCL‐alkyne), maleimide end‐functionalized PMMA (PMMA‐MI) and PtBA‐MI were introduced onto the block copolymer via sequential azide‐alkyne and Diels‐Alder click reactions, thus yielding block‐brush copolymers. The molecular weight of block‐brush copolymers was measured via triple detection GPC (TD‐GPC) introducing the experimentally calculated dn/dc values to the software. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Azide‐alkyne and Diels–Alder click reactions together with a click‐like nitroxide radical coupling reaction were used in a one‐pot fashion to generate tetrablock quaterpolymer. The various living polymerization generated linear polymers with orthogonal end‐functionalities, maleimide‐terminated poly(ethylene glycol) (PEG‐MI), anthracene‐ and azide‐terminated polystyrene, alkyne‐ and bromide‐terminated poly(tert‐butyl acrylate) or alkyne‐poly(n‐butyl acrylate), and tetramethylpiperidine‐1‐oxyl (TEMPO)‐terminated poly(ε‐caprolactone) (PCL‐TEMPO) were clicked together in a one‐pot fashion to generate PEG‐b‐PS‐b‐PtBA‐b‐PCL or PEG‐b‐PS‐b‐PnBA‐b‐PCL quaterpolymer using Cu(0), CuBr, and N,N,N′,N″,N″‐pentamethyldiethylenetriamine as catalyst in dimethyl formamide at 80 °C for 36 h. Linear precursors and target quaterpolymers were analyzed via 1H NMR and gel permeation chromatography. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
We demonstrated the successful postfunctionalization of poly(oxanorbornene imide) (PONB) with two types of double bonds using sequential orthogonal reactions, nucleophilic thiol‐ene coupling via Michael addition and radical thiol‐ene click reactions. First, the synthesis of PONB with side chain acrylate groups is carried out via ring‐opening metathesis polymerization and nitroxide radical coupling reaction, respectively. Subsequently, the resulting polymer having two different orthogonal functionalities, main chain vinyl and side chain acrylate, is selectively modified via two sequential thiol‐ene click reactions, nucleophilic thiol‐ene coupling via Michael addition and photoinduced radical thiol‐ene. The orthogonal reactivity of two diverse double bonds, vinyl and acrylate functionalities, for the abovementioned consecutive thiol‐ene click reactions was first demonstrated on the model compound. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
Hetero‐arm star ABC‐type terpolymers, poly(methyl methacrylate)‐polystyrene‐poly(tert‐butyl acrylate) (PMMA‐PS‐PtBA) and PMMA‐PS‐poly(ethylene glycol) (PEG), were prepared by using “Click” chemistry strategy. For this, first, PMMA‐b‐PS with alkyne functional group at the junction point was obtained from successive atom transfer radical polymerization (ATRP) and nitroxide‐mediated radical polymerization (NMP) routes. Furthermore, PtBA obtained from ATRP of tBA and commercially available monohydroxyl PEG were efficiently converted to the azide end‐functionalized polymers. As a second step, the alkyne and azide functional polymers were reacted to give the hetero‐arm star polymers in the presence of CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine ( PMDETA) in DMF at room temperature for 24 h. The hetero‐arm star polymers were characterized by 1H NMR, GPC, and DSC. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5699–5707, 2006  相似文献   

18.
ABC type miktoarm star copolymer with polystyrene (PS), poly(ε‐caprolactone) (PCL) and poly(ethylene glycol) (PEG) arms was synthesized using controlled polymerization techniques in combination with thiol‐ene and copper catalyzed azide‐alyne “click” reactions (CuAAC) and characterized. For this purpose, 1‐(allyloxy)‐3‐azidopropan‐2‐ol was synthesized as the core component in a one‐step reaction with high yields (96%). Independently, ω‐thiol functionalized polystyrene (PS‐SH) was synthesized in a two‐step protocol with a very narrow molecular weight distribution. The bromo end function of PS obtained by atom transfer radical polymerization was first converted to xanthate function and then reacted with 1, 2‐ethandithiol to yield desired thiol functional polymer (PS‐SH). The obtained polymer was grafted onto the core by thiol‐ene click chemistry. In the following stage, ε‐caprolactone monomer was polymerized from the core by ring opening polymerization (ROP) using tin octoate as catalyst through hydroxyl groups to form the second arm. Finally, PEG‐acetylene, which was simply synthesized by the esterification of Me‐PEG and 5‐pentynoic acid, was clicked onto the core through azide groups present in the structure. The intermediates at various stages and the final miktoarm star copolymer were characterized by 1H NMR, FTIR, and GPC measurements. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
Heteroarm H‐shaped terpolymers (PS)(PtBA)–PEO–(PtBA)(PS) and (PS)(PtBA)–PPO–(PtBA)(PS) [where PS is polystyrene, PtBA is poly(tert‐butyl acrylate), PEO is poly(ethylene oxide), and PPO is poly(propylene oxide)], containing PEO or PPO as a backbone and PS and PtBA as side arms, were prepared via the combination of the Diels–Alder reaction and atom transfer radical and nitroxide‐mediated radical polymerization routes. Commercially available PEO or PPO containing bismaleimide end groups was reacted with a compound having an anthracene functionality, succinic acid anthracen‐9‐yl methyl ester 3‐(2‐bromo‐2‐methylpropionyloxy)‐2‐methyl‐2‐[2‐phenyl‐2‐(2,2,6,6‐tetramethylpiperidin‐1‐yloxy)ethoxycarbonyl]propyl ester, with a Diels–Alder reaction strategy. The obtained macroinitiator with tertiary bromide and 2,2,6,6‐tetramethylpiperidin‐1‐oxy functional end groups was used subsequently in the atom transfer radical polymerization of tert‐butyl acrylate and in the nitroxide‐mediated free‐radical polymerization of styrene to produce heteroarm H‐shaped terpolymers with moderately low molecular weight distributions (<1.31). The polymers were characterized with 1H NMR, ultraviolet, gel permeation chromatography, and differential scanning calorimetry. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3947–3957, 2006  相似文献   

20.
In this study, graft copolymers with regular graft points containing polystyrene (PS) backbone and poly(methyl methacrylate) (PMMA), poly(tert‐butyl acrylate) (PtBA), or poly (ethylene glycol) (PEG) side chains were simply achieved by a sequential double polymer click reactions. The linear α‐alkyne‐ω‐azide PS with an anthracene pendant unit per chain was produced via atom transfer radical polymerization of styrene initiated by anthracen‐9‐ylmethyl 2‐((2‐bromo‐2‐methylpropanoyloxy)methyl)‐2‐methyl‐3‐oxo‐3‐(prop‐2‐ynyloxy) propyl succinate. Subsequently, the azide–alkyne click coupling of this PS to create the linear multiblock PS chain with pendant anthracene sites per PS block, followed by Diels–Alder click reaction with maleimide end‐functionalized PMMA, PtBA, or PEG yielded final PS‐g‐PMMA, PS‐g‐PtBA or PS‐g‐PEG copolymers with regular grafts, respectively. Well‐defined polymers were characterized by 1H NMR, gel permeation chromatography (GPC) and triple detection GPC. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号