首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
Light‐responsive polymers with controllable, reversible crosslink mechanisms have the potential to create unique biomaterials with stimulus‐controlled swelling, degradation and diffusion properties useful in tissue engineering and drug delivery applications. Generic photodimerizing polyethylene glycol–anthracene macromolecules that may be grafted to various polymers to effectively control their crosslinking via a photodimerization mechanism have been developed. These generic crosslinkers were shown to effectively introduce photoresponsive properties into hyaluronate and alginate as model hydrophilic polymers. In vitro testing using human corneal epithelial cells was used to demonstrate cytocompatibility of the resulting photogels. The effective crosslinking density of the photogels could be increased resulting in a decrease in the release rate of small and large molecules from the photogels following exposure to 365 nm light. This tuneable crosslinking has the potential to manipulate the delivery rates of therapeutics resulting in control over treatment profiles and may lend itself to various applications, which may benefit from light induced changes in crosslinking.

  相似文献   


2.
A pH and reduction dual‐stimuli‐responsive PEGDA/PAMAM injectable network hydrogel containing “acetals” as pH‐sensitive groups and “disulfides” as reducible linkages was designed and synthesized via aza‐Michael addition reaction between PAMAM and PEGDA diacrylates. The pore size and swelling ratio of hydrogels was varied from 14 ± 3 to 19 ± 4 μm and 214 ± 13 to 300 ± 19 μm, respectively, with varying ethylene glycol repeating units in diacrylates. The swelling ratio of PEGDA/PAMAM network hydrogel increased with increase in the molecular weight of PEG and with decrease in pH. The presence of different cationizable amino‐functionalities in PEGDA/PAMAM network hydrogel helped to enhance the swelling ability of hydrogel under the acidic conditions. The continuous increase in metabolically active live HeLa cells with time in MTT assay implied biocompatibility/noncytotoxicity of the synthesized PEGDA/PAMAM injectable network hydrogel. Furthermore, the prepared PEGDA/PAMAM hydrogel showed higher degradation at lower pH and at higher concentration of DTT. The burst release of doxorubicin from PEGDA/PAMAM hydrogel under the environment of the lower pH and in presence of DTT compared to the release at normal physiological pH and in absence of DTT suggested the potential ability of this model hydrogel system for targeted and selective anticancer drug release at tumor tissues. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2080–2095  相似文献   

3.
In this work, INU, a natural polysaccharide, has been chemically modified in order to obtain new photocrosslinkable derivatives. To reach this goal, INU has been derivatized with MA thus obtaining four samples (INU-MA derivatives) as a function of the temperature and time of reaction. An aqueous solution of the derivative INU-MA1 was irradiated by using a UV lamp with an emission range from 250 to 364 nm and without using photoinitiators. The obtained hydrogel showed a remarkable water affinity but it underwent a partial degradation in simulated gastric fluid. To overcome this drawback, INU-MA1 was derivatized with SA thus obtaining the INU-MA1-SA derivative designed to produce a hydrogel showing a low swelling and an increased chemical stability in acidic medium. Ibuprofen, as a model drug, was loaded by soaking into INU-MA1 and INU-MA1-SA hydrogels and its release from these matrices was evaluated in simulated gastrointestinal fluids. INU-MA1 hydrogel showed the ability to quickly release the entrapped drug thus indicating its potential as a matrix for an oral formulation. INU-MA1-SA hydrogel showed a pH-responsive drug delivery. Therefore it is a promising candidate for controlled drug release in the intestinal tract.  相似文献   

4.
Reducibly degradable hydrogels of poly(N‐isopropylacrylamide) (PNIPAM) and poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) were synthesized by the combination of reversible addition‐fragmentation chain transfer (RAFT) polymerization and click chemistry. The alkyne‐pending copolymer of PNIPAM or PDMAEMA was obtained through RAFT copolymerization of propargyl acrylate with NIPAM or DMAEMA. Bis‐2‐azidyl‐isobutyrylamide of cystamine (AIBCy) was used as the crosslinking reagent to prepare reducibly degradable hydrogels by click chemistry. The hydrogels exhibited temperature or pH stimulus‐responsive behavior in water, with rapid response, high swelling ratio, and reproducible swelling/shrinkage cycles. The loading and release of ceftriaxone sodium proved the feasibility of the hydrogels as the stimulus‐responsive drug delivery system. Furthermore, the presence of disulfide linkage in AIBCy favored the degradation of hydrogels in the reductive environment. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3604–3612, 2010  相似文献   

5.
The controlled synthesis and characterization of a range of stimuli responsive cationic terpolymers containing varying amounts of N‐isopropylacrylamide (NIPAM), 3‐(methylacryloylamino)propyl trimethylammonium chloride (MAPTAC), and poly(ethylene glycol)monomethyl methacrylate (PEGMA) is presented. The terpolymers were synthesized using reversible addition‐fragmentation chain transfer (RAFT) polymerization. Compositions of the terpolymers determined using 1H NMR were in close agreement to the theoretical values determined from the monomer feed ratios. GPC‐MALLS was used to analyze the molecular weight characteristics of the polymers, which were found to have low polydispersities (Mw/Mn 1.1–1.4). The phase transitions were studied as a function of PEGMA and NIPAM content using temperature controlled 1H NMR and turbidity measurements (UV‐Vis). The relationship between thermal stability and the comonomer ratio of the polymers was measured using thermogravimetric analysis (TGA). Protein interaction studies were performed to determine the suitability of the polymers for biological applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4021–4029, 2008  相似文献   

6.
A novel nanofibrous mat featuring an ultraviolet (UV)‐induced CO2‐responsive behavior was fabricated via electrospinning and used as a controlled drug release system. First, a random copolymer for electrospinning, poly(N,N‐diethylaminoethyl acrylamide‐coN‐benzylacrylamide‐coN,N‐dimethyl‐N‐(2‐nitrobenzyl)‐ethaneamine acrylamide‐co‐4‐acryloyloxy benzophenone) [P(DEEA‐co‐BA‐co‐DMNOBA‐co‐ABP)], was prepared based on pentafluorophenyl esters via an “active ester‐amine” chemistry reaction. Subsequently, doxorubicin hydrochloride (DOX)‐loaded P(DEEA‐co‐BA‐co‐DMNOBA‐co‐ABP) nanofibers were fabricated, yielding a new drug‐loaded nanofibrous mat as a potential wound dressing. These DOX‐loaded nanofibers can respond to UV irradiation and CO2 stimulation. Interestingly, without UV irradiation, the fabricated nanofibers cannot exhibit any responsiveness. Therefore, the majority of the DOX was steadily stored in the nanofibers, even in the presence of CO2. However, upon UV irradiation, the CO2‐responsive behavior of the nanofibers was activated and the prepared nanofibers swelled slightly, resulting in the release of around 42% DOX from the nanofibers. Upon further purging with CO2, the release amount of DOX from the nanofibers could reach up to approximately 85%, followed by the morphological transition from a nanofibrous mat to a porous hydrogel film. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1580–1586  相似文献   

7.
Symmetric reduction‐responsive amphiphilic comblike copolymers mid‐disulfide‐functionalized comblike copolymers with alternating copolymer comprised of styrenic unit and N‐(2‐hydroxyethyl) maleimide (HEMI) unit (poly(St‐alt‐HEMI)) backbones and alternating PEG and PCL side chains (S‐CP(PEG‐alt‐PCL)) with poly(St‐alt‐HEMI) backbones and alternating poly(ε‐caprolactone) (PCL) and poly(ethylene glycol) (PEG) side chains were synthesized and used as nanocarriers for in vitro release of doxorubicin. The target copolymers with predetermined molecular weight and narrow molecular weight distribution (Mw/Mn = 1.15–1.20) were synthesized by reversible addition‐fragmentation chain transfer (RAFT) copolymerization of vinylbenzyl‐terminated PEG and N‐(2‐hydroxyethyl) maleimide mediated by a disulfide‐functionalized RAFT agent S‐CPDB, and followed by ring‐opening polymerization of ε‐caprolactone. When compared with linear block copolymer comprised of poly(ethylene glycol) (PEG) and poly(?‐caprolactone) (PCL) segments (PEG‐b‐PCL) copolymers, comblike copolymers with similar PCL contents usually exhibited decreased crystallization temperature, melting temperature, and degree of crystallinity, indicating the significant influence of copolymer architecture on physicochemical properties. Dynamic light scattering measurements revealed that comblike copolymers were liable to self‐assemble into aggregates involving vesicles and micelles with average diameter in the range of 56–226 nm and particle size distribution ranging between 0.07 and 0.20. In contrast to linear copolymer aggregates, comblike copolymer aggregates with similar compositions were of improved storage stability and enhanced drug‐loading efficiency. In vitro drug release confirmed the disulfide‐linked comblike copolymer aggregates could rapidly release the encapsulated drug when triggered by 10 mM DL ‐dithiothreitol. These reduction‐sensitive, biocompatible, and biodegradable aggregates have a potential as controlled delivery vehicles. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
Poly(N‐vinyl‐pyrrolidone) (PVP) hydrogel has been considered as a very interesting and promising thermosensitive material. The most vital shortcoming of PVP hydrogel as thermosensitive material is that it does not exhibit thermosensitivity under usual conditions. In this work, semi‐interpenetrating polymer network (semi‐IPN) hydrogels based on PVP and carboxymethylcellulose (CMC) were prepared. The volume phase transition temperature (VPTT) of the hydrogels was determined by swelling behavior and differential scanning calorimetry (DSC). The results showed that the VPTT was significantly dependent on CMC content and the pH of the swelling medium. The amount of CMC in the semi‐IPN hydrogels was 0.050, 0.075, and 0.100 g, the VPTT in buffer solution of pH 1.2 was 29.9 °C, 27.5 °C and 24.5 °C, respectively. In addition, the VPTT occurred in buffer solution of pH 1.2, but did not appear in alkaline medium. Bovine serum albumin (BSA) as a model drug was loaded and the in vitro release studies were carried out in different buffer solutions and at different temperatures. The results of this study suggest that PVP/CMC semi‐IPN hydrogels could serve as potential candidates for protein drug delivery in the intestine. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1749–1756, 2010  相似文献   

9.
Atom transfer radical polymerization (ATRP) is one of the most popular advanced polymerization techniques in macromolecular science, allowing the synthesis of tailor-made polymers with controlled molecular weight, architecture, composition, and functionality. The combination of ATRP and ring-opening polymerization (ROP) provides a straightforward route for the preparation of polymers exhibiting both targeted and well-defined features and biodegradability, which is very interesting for the development of new materials for biomedical applications. Among the different types of polymer architectures, amphiphilic star block copolymers (BCPs) represent a very attractive one, due to their high degree of functionality at the molecular surface, low hydrodynamic volume and higher encapsulation ability, compared to molecular systems based on linear polymers. This review article highlights the research focused on the synthesis of amphiphilic well-defined degradable star BCPs by combination of ROP and ATRP, with particular focus on the development of polymers for biomedical applications, such as anticancer drug delivery, diagnosis therapy, or photodynamic therapy, which is the most investigated field regarding these polymers.  相似文献   

10.
In this research, thermo‐ and pH‐responsive nanoparticles with an average diameter of about 50–200 nm were synthesized via the surfactant‐free emulsion polymerization. The thermal/pH dual responsive properties of these nanoparticles were designed by the addition of a pH sensitive monomer, acrylic acid (AA), to be copolymerized with N‐isopropylacrylamide (NIPAAm) in a chitosan (CS) solution. The molar ratio of CS/AA/NIPAAm in the feed was changed to investigate its effect on structure, morphology, thermal‐ and pH‐responsive properties of the nanoparticles. It was found that CS‐PAA‐PNIPAAm nanoparticles could be well dispersed in the aqueous solution and carried positive charges on the surface. The addition of thermal‐sensitive NIPAAm monomer affected the polymerization mechanism and interactions between CS and AA. The particle size of the nanoparticles was found to be varied with the composition of NIPAAm monomer in the feed. The synthesized nanoparticles exhibited stimuli‐responsive properties, and their mean diameter thus could be manipulated by changing pH value and temperature of the environment. The nanoparticles showed a continuous release of the encapsulated doxycycline hyclate up to 10 days during an in vitro release experiment. The environmentally responsive nanoparticles are expected to be used in many fields such as drug delivery system. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2798–2810, 2009  相似文献   

11.
Dual photo‐ and pH‐responsive polymeric vesicles are constructed from a host–guest complex between a water‐soluble pillar[6]arene and an azobenzene ended functionalized poly(ε‐caprolactone). Reversible morphological transitions between vesicles and solid aggregates are achieved upon repeated UV stimulus and pH stimulus. Moreover, the polymeric vesicles present excellent cytocompatibility toward HepG2 cells and can be further applied for controlled release of a hydrophilic model drug, DOX?HCl. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2477–2482  相似文献   

12.
In the present research, we have investigated a drug delivery system based on the pH‐responsive behaviors of zein colloidal nanoparticles coated with sodium caseinate (SC) and poly ethylene imine (PEI). These systematically designed nanoparticles were used as nanocarriers for encapsulation of ellipticine (EPT), as an anticancer drug. SC and PEI coatings were applied through electrostatic adsorption, leading to the increased size and improved polydispersity index of nanoparticles as well as sustained release of drug. Physicochemical characteristics such as hydrodynamic diameter, size distribution, zeta potential and morphology of nanoparticles prepared using different formulations and conditions were also determined. Based on the results, EPT was encapsulated into the prepared nanoparticles with a high drug loading capacity (5.06%) and encapsulation efficiency (94.8%) under optimal conditions. in vitro experiments demonstrated that the release of EPT from zein‐based nanoparticles was pH sensitive. When the pH level decreased from 7.4 to 5.5, the rate of drug release was considerably enhanced. The mechanism of pH‐responsive complexation in the drug encapsulation and release processes was extensively investigated. The pH‐dependent electrostatic interactions and drug state were hypothesized to affect the release profiles. Compared to the EPT‐loaded zein/PEI nanoparticles, the EPT‐loaded zein/SC nanoparticles exhibited a better drug sustained‐release profile, with a smaller initial burst release and longer release period. According to the results of in vitro cytotoxicity experiments, drug‐free nanoparticles were associated with a negligible cytotoxicity, whereas the EPT‐loaded nanoparticles displayed a high toxicity for the cancer cell line, A549. Our findings indicate that these pH‐sensitive protein‐based nanoparticles can be used as novel nanotherapeutic tools and potential antineoplastic drug carriers for cancer chemotherapy with controlled release.  相似文献   

13.
Spherical, smooth-surfaced and mechanically stable alginate-poly(L-histidine) (PLHis) microcapsules with narrow particle size distributions were prepared by incubating calcium alginate beads in aqueous solutions of PLHis. The in vitro release characteristics, drug loading and encapsulation efficiency of the microcapsules were investigated using bovine erythrocytes hemoglobin (Hb) as a model drug. The results showed that the concentration of Ca(2+) ions had a considerable effect on the drug loading, encapsulation efficiency and in vitro release behavior of the microcapsules. When the concentration of CaCl(2) in the PLHis solution was increased from 0 to 3.0% (w/v), the drug loading and encapsulation efficiency decreased significantly from 38.0 to 4.3% and from 92.9 to 8.0%, respectively, while the total cumulative release of Hb from microcapsules in phosphate buffered saline solution (PBS, pH 6.8) decreased from 96.2 to 72.8% in 24 h. No significant protein release was observed during 70 h of incubation in hydrochloric acid solution (pH 1.2). However, under neutral conditions (PBS, pH 6.8), the Hb was completely and stably released within 24-70 h. An explosion test showed that the stability of alginate-PLHis microcapsules depended strongly on the concentration of PLHis and the calcium ions in solution. [Diagram: see text] Microscopy photo of Hb-loaded alginate-PLHis microcapsules.  相似文献   

14.
Star‐shaped polypeptide/glycopolymer biohybrids composed of poly(γ‐ benzyl L ‐glutamate) and poly(D ‐gluconamidoethyl methacrylate), exhibiting controlled molecular weights and low polydispersities, were synthesized by the combination of ring‐opening polymerization of γ‐benzyl‐L ‐glutamate N‐carboxyanhydride and the direct atom transfer radical polymerization of unprotected D ‐gluconamidoethyl methacrylate glycomonomer. These biohybrids were characterized in detail by means of FTIR, 1H NMR, gel permeation chromatography, differential scanning calorimetry, and wide angle X‐ray diffraction. Independent of weight fraction of hydrophilic glycopolymer segment, the biohybrids self‐assembled into large spherical micelles in aqueous solution, which had a helical polypeptide core surrounded by a multivalent glycopolymer shell. The deprotected poly(L ‐glutamate)/glycopolymer hybrid exhibited a pH‐sensitive self‐assembly behavior, and the average size of the nanoparticles decreased gradually over the aqueous pH value. Moreover, whatever these biohybrids existed in unimolecular level or glycopolymer‐surfaced nanoparticles, they had specific biomolecular recognition with Concanavalin A compared with bovine serum albumin. Furthermore, star‐shaped biohybrids showed a higher doxorubicin loading efficiency and longer drug‐release time than linear analogues. This potentially provides a platform for fabricating targeted anticancer drug delivery system and studying glycoprotein functions in vitro. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2009–2023, 2009  相似文献   

15.
The binding and release capabilities of a hydrogel series, constructed of hydrophilic poly(ethylene glycol) segments and hydrophobic dendritic junctions [poly (benzyl ether)s], are evaluated in aqueous media. The environmental response of the amphiphilic networks is also tested in water at three pH values: 1.5, 7.0, and 10.1. The highest swelling ratio is observed under acidic conditions and varies between 3.7 and 6.5, depending on the crosslinking density and dendrimer generation. Gel specimens with embedded indicators react within 3–6 s with a clear color switch to the change in the pH of the surrounding medium. The experiments with model anionic and cationic indicators and stains show that the hydrogels have basic interiors. The gel binding capabilities depend on the water solubility of the substrate and on the size of the incorporated dendritic fragments. Model release studies have been performed at 37 °C and pHs 1.5, 7.0, and 10.1. The observed phenomena are explained by the transformations in the structure and charge that both the networks and the model compounds undergo with the changes in the pH of the aqueous medium. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4017–4029, 2005  相似文献   

16.
A drug delivery system based on spontaneous deposition of soluble, low-molecular-weight therapeutic agents has been developed for the purpose of sustaining drug release. Layer-by-layer assembly of oppositely charged polyelectrolytes onto melamine formaldehyde (MF) colloidal particles, followed by removal of the cores at low pH has yielded intact hollow microcapsules having the ability to induce deposition of various water-soluble substances. Dynamic observation by confocal laser scanning microscopy provided direct evidence of such deposition. Dependence of loading rate on molecular weight was investigated. Efficient loading of an anti-cancer drug, daunorubicin (DNR), was confirmed by transmission electron microscopy (TEM). Its release was quantified by fluorometry. The results indicated that loading, and subsequent release, could be tuned by factors such as feeding concentrations, temperature, and salt concentrations. The intrinsic mechanism of loading and release was discussed taking into account the interaction between the drugs and the poly(styrene sulfonate)/MF complex existing in the hollow capsules. With culture of the HL-60 cell line, a kind of human leukemia cell, the presence of DNR-loaded capsules was seen to steadily decrease the cyto-viability. Fluorescence intensity averaged from inside the circles as a function of incubation time.  相似文献   

17.
The hairy poly(methacrylic acid‐co‐divinylbenzene)‐g‐poly(N‐isopropylacrylamide) (P(MAA‐co‐DVB)‐g‐PNIPAm) nanocapsules with pH‐responsive P(MAA‐co‐DVB) inner shell and temperature‐responsive PNIPAm brushes were prepared by combined distillation–precipitation copolymerization and surface thiol‐ene click grafting reaction using 3‐(trimethoxysilyl)propyl methacrylate‐modified silica (SiO2‐MPS) nanospheres as a sacrificial core material. The well‐defined PNIPAm was synthesized by a reversible addition fragmentation chain transfer (RAFT) polymerization. The chain end was converted to a thiol by chemical reduction. The PNIPAm was integrated into the nanocapsules via thiol‐ene click reaction. The surface thiol‐ene click reaction conduced to tunable grafting density of PNIPAm brushes. The grafting densities decreased from 0.70 chains nm?2 to 0.15 chains nm?2 with increasing the molecular weight of grafted PNIPAm chains. Using water soluble doxorubicin hydrochloride (DOX·HCl) as a model molecular, the tunable shell permeability of the nanocapsule was investigated in detail. The permeability constant can be tuned by controlling the thickness of the P(MAA‐co‐DVB) inner shell, the grafting density of PNIPAm brushes, and the environmental pH and temperature. The tunable shell permeability of these nanocapsules results in the release of the loaded guest molecules with manipulable releasing kinetics. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2202–2216  相似文献   

18.
Stable biodegradable nanogels cross-linked with disulfide linkages were prepared by inverse miniemulsion atom transfer radical polymerization (ATRP). These nanogels could be used for targeted drug delivery scaffolds for biomedical applications. The nanogels had a uniformly cross-linked network, which can improve control over the release of encapsulated agents, and the nanogels biodegraded into water-soluble polymers in the presence of a biocompatible glutathione tripeptide, which is commonly found in cells. The biodegradation of nanogels can trigger the release of encapsulated molecules including rhodamine 6G, a fluorescent dye, and Doxorubicin (Dox), an anticancer drug, as well as facilitate the removal of empty vehicles. Results obtained from optical fluorescence microscope images and live/dead cytotoxicity assays of HeLa cancer cells suggested that the released Dox molecules penetrated cell membranes and therefore could suppress the growth of cancer cells. Further, OH-functionalized nanogels were prepared to demonstrate facile applicability toward bioconjugation with biotin. The number of biotin molecules in each nanogel was determined to be 142,000, and the formation of bioconjugates of nanogels with avidin was confirmed using optical fluorescence microscopy.  相似文献   

19.
Zhu Y  Sheng R  Luo T  Li H  Sun W  Li Y  Cao A 《Macromolecular bioscience》2011,11(2):174-186
A new series of triblock [dendritic poly(L-lysine)]-block-PLLA-block-[dendritic poly(L-lysine)]s (DL(2) -PLLA-DL(2) ) with PLLA block lengths of 11.5-26.5 and double 2-generation PLL dendrons DL(2) as model cationic amphiphiles were synthesized and characterized. Their CAC, self-aggregation and plasmid DNA binding affinities in pure water and PBS were studied. The PLLA block length dependence of particle size, morphology and ξ potential for organized pDNA/amphiphile polyplex aggregates were examined. Finally, toxicities of these DL(2) -PLLA-DL(2) amphiphiles and their polyplexes were assayed by MTT with HeLa, SMMC-7721 and COS-7 cells, and COS-7 cell luciferase and eGFP gene transfection efficacies with these amphiphiles as the delivery carriers were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号