首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents a selective and efficient sample preparation procedure for NLLGLIEAK, signature peptide for the small cell lung cancer (SCLC) biomarker ProGRP, in human serum. The procedure is based on immuno‐capture of ProGRP in 96‐wells microtiter plates coated with the mAb E146. After immuno‐capture and thorough rinse, trypsin was added for in‐well digestion. Subsequently the signature peptide was enriched by SPE and determined by LC‐MS/MS. Various steps in the procedure were optimized to achieve a low LOD such as dilution of sample, tryptic digestion, and SPE cleanup and peptide enrichment conditions. A single quadropole MS was used during optimization of the method. A triple quadropole MS was used in the method evaluation in order to improve sensitivity. The evaluation showed good repeatability (RSD, 11.9–17.5%), accuracy (3.0–6.6%), and linearity (r2 = 0.995) in the tested range (0.5–50 ng/mL). LOD and LOQ were in the pg/mL area (0.20 and 0.33 ng/mL, respectively), enabling the determination of clinically relevant concentrations. The method was applied to two patient samples and showed good agreement with an established immunological reference method. The final method was compared to a previous published LC‐MS method for the determination of ProGRP in serum based on protein precipitation and online sample cleanup. Both showed acceptable method performance, however, the immuno‐capture LC‐MS method was superior with respect to sensitivity. This illustrates the large potential of immuno‐capture sample preparation prior to LC‐MS in protein biomarker quantification.  相似文献   

2.
Xiao Chai Hu Decoction (XCHD), named Sho‐saiko‐to in Japanese, is a well‐known traditional Chinese medicine formula used in Asia. However, the characterization methods used in the past have lacked sensitivity and the nature of the active constituents of XCHD remains unclear. This study was carried out to establish the hyphenated method of bioactivity‐guided fractionation and liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight mass spectrometry (LC‐ESI‐QTOFMS/MS) in order to identify the major bioactive constituents of XCHD. D101 macroporous resin was used to separate and enrich the material base into four fractions, XCHD‐1, XCHD‐2, XCHD‐3 and XCHD‐4. Each fraction was then evaluated for its antidepressant effect using depression‐related parameters. An LC‐ESI‐QTOFMS/MS method in both positive and negative ion mode was also applied for separation and identification of the biological active fractions of XCHD. As a result, 79 compounds including polysaccharides, flavonoids, saikosaponins, ginsenosides, licoricesaponins and gingerols were detected, 69 of them were identified or tentatively characterized. Based on our preliminary characterization investigations, polysaccharides, gingerols and flavonoids in XCHD may contribute to the antidepressant effect of XCHD. In conclusion, the hyphenated method of bioactivity‐guided fractionation and LC‐ESI‐QTOFMS/MS was meaningful for the isolation and preliminary identification of the biological active components in complex matrices of traditional Chinese medicine. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Cylindrospermopsin (CYN) is a toxic alkaloid‐like compound produced by some strains of cyanobacteria, procariotic organisms occurring in water blooms, observed worldwide in eutrophic lakes and drinking water reservoirs. Methods for determination of CYN in freshwater and fish muscle by liquid chromatography coupled to electrospray ion trap mass spectrometry are herein described. The performances of both methods are reported; ion trap LC/ESI‐MS/MS resulted highly selective and reliable in unambiguous identification of CYN, based on monitoring the precursor ion and three product ions. The methods developed showed satisfactory mean recoveries (higher than 63.6%) and relative standard deviations, ranging from 5.8 to 9.8%. The limits of quantification at 0.10 ng/mL in freshwaters and 1.0 ng/g in fish muscle, respectively, allow for determination of CYN also in early contamination stages. Ion trap LC/ESI‐MS/MS was successfully applied to the identification and quantification of CYN in water and cyanobacteria extracts from Lake Averno, near Naples, representing the first case of contamination described in southern Italy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A highly sensitive and selective on‐line two‐dimensional reversed‐phase liquid chromatography/electrospray ionization–tandem mass spectrometry (2D‐LC‐ESI/MS/MS) method was developed and validated to determine rifaximin in rat serum by direct injection. The 2D‐LC‐ESI/MS/MS system consisted of a restricted access media column for trapping proteins as the first dimension and a Waters C18 column as second dimension using 0.1% aqueous acetic acid:acetonitrile as mobile phase in a gradient elution mode. Rifampacin was used as an internal standard. The linear dynamic range was 0.5–10 ng/mL (r2 > 0.998). Acceptable precision and accuracy were obtained over the calibration range. The assay was successfully used in analysis of rat serum to support pharmacokinetic studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A liquid chromatographic–electrospray ionization–time‐of‐flight/mass spectrometric (LC‐ESI‐TOF/MS) method was developed and applied for the determination of WKYMVm peptide in rat plasma to support preclinical pharmacokinetics studies. The method consisted of micro‐elution solid‐phase extraction (SPE) for sample preparation and LC‐ESI‐TOF/MS in the positive ion mode for analysis. Phenanthroline (10 mg/mL) was added to rat blood immediately for plasma preparation followed by addition of trace amount of 2 m hydrogen chloride to plasma before SPE for stability of WKYMVm peptide. Then sample preparation using micro‐elution SPE was performed with verapamil as an internal standard. A quadratic regression (weighted 1/concentration2), with the equation y = ax2 + bx + c was used to fit calibration curves over the concentration range of 3.02–2200 ng/mL for WKYMVm peptide. The quantification run met the acceptance criteria of ±25% accuracy and precision values. For quality control samples at 15, 165 and 1820 ng/mL from the quantification experiment, the within‐run and the between‐run accuracy ranged from 92.5 to 123.4% with precision values ≤15.1% for WKYMVm peptide from the nominal values. This novel LC‐ESI‐TOF/MS method was successfully applied to evaluate the pharmacokinetics of WKYMVm peptide in rat plasma.  相似文献   

6.
Flavomycin complex is an antibiotic banned in the European Union as an additive in feed stuffs. As a consequence, the monitoring programmes for official control within the Community require analysis of feeds for possible illegal use of flavomycin. A method for unambiguous identification and quantification of moenomycin A, the main pharmacologically active component of flamomycin complex, in several feeds by liquid chromatography coupled to electrospray ion trap mass spectrometry (LC/ESI‐MS/MS) is herein described for the first time. The method was developed to be used as a confirmative analytical tool for the network of Italian official control laboratories; both the singly and doubly charged molecular ions were observed as precursor ions, from which four product ions were selected for both quantitative analysis and unambiguous identification of moenomycin A. The method was in‐house validated for feeds in the concentration range 0.50–30.0 µg/g, according to the Regulation 882/2004/EC requirements. Mean recoveries ranging between 83.9–94.2% and relative standard deviations <23% account for method trueness and repeatability, respectively. Moreover, other analytical performance parameters, i.e. method specificity, ruggedness, the linearity of detector response, the limit of quantification (LOQ), the limit of detection (LOD), and measurement uncertainty were evaluated and reported. The ion trap LC/ESI‐MS/MS method is highly selective and reliable; high drug recovery, good reproducibility and an LOQ down to 0.10 µg/g guarantee its applicability for confirmatory purposes in the official control activity in Italy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Rapid, simple and reliable HPLC/UV and LC‐ESI‐MS/MS methods for the simultaneous determination of five active coumarins of Angelicae dahuricae Radix, byakangelicol (1), oxypeucedanin (2), imperatorin (3), phellopterin (4) and isoimperatorin (5) were developed and validated. The separation condition for HPLC/UV was optimized using a Develosil RPAQUEOUS C30 column using 70% acetonitrile in water as the mobile phase. This HPLC/UV method was successful for providing the baseline separation of the five coumarins with no interfering peaks detected in the 70% ethanol extract of Angelicae dahuricae Radix. The specific determination of the five coumarins was also accomplished by a triple quadrupole tandem mass spectrometer equipped with an electrospray ionization source (LC‐ESI‐MS/MS). Multiple reaction monitoring (MRM) in the positive mode was used to enhance the selectivity of detection. The LC‐ESI‐MS/MS methods were successfully applied for the determination of the five major coumarins in Angelicae dahuricae Radix. These HPLC/UV and LC‐ESI‐MS/MS methods were validated in terms of recovery, linearity, accuracy and precision (intra‐ and inter‐day validation). Taken together, the shorter analysis time involved makes these HPLC/UV and LC‐ESI‐MS/MS methods valuable for the commercial quality control of Angelicae dahuricae Radix extracts and its pharmaceutical preparations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
In the present paper, a proteomic method for species determination in fibres has been developed. Keratin was extracted from yak, wool and cashmere fibres and digested by trypsin, providing peptide mixtures that were analyzed by liquid chromatography coupled with electrospray mass spectrometry (LC/ESI‐MS) in order to identify peptidic species‐specific markers able to differentiate the fibres. Several suitable peptide markers were identified and validated in different fibres of different origin and having undergone different technological treatments, showing 100% specificity and 100% selectivity. Most of the peptide markers were also identified by means of high‐resolution mass spectrometry, confirming the origin from species‐specific keratin sequences. Some peptides were also used for the quantification of the different species in mixed fibres by LC/ESI‐MS. Validation experiments and blind tests confirmed their ability to act as very specific quantitative and qualitative markers. The method here developed is a valid complement to the standard benchmark methods for fibre identification and quantification and will be very useful for assessing the authenticity of textile products. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Considering the vast variety of synthetic cannabinoids and herbal mixtures – commonly known as ‘Spice’ or ‘K2’ – on the market and the resulting increase of severe intoxications related to their consumption, there is a need in clinical and forensic toxicology for comprehensive up‐to‐date screening methods. The focus of this project aimed at developing and implementing an automated screening procedure for the detection of synthetic cannabinoids in serum using a liquid chromatography‐ion trap‐MS (LC‐MSn) system and a spectra library‐based approach, currently including 46 synthetic cannabinoids and 8 isotope labelled analogues. In the process of method development, a high‐temperature ESI source (IonBoosterTM, Bruker Daltonik) and its effects on the ionization efficiency of the investigated synthetic cannabinoids were evaluated and compared to a conventional ESI source. Despite their structural diversity, all investigated synthetic cannabinoids benefitted from high‐temperature ionization by showing remarkably higher MS intensities compared to conventional ESI. The employed search algorithm matches retention time, MS and MS2/MS3 spectra. With the utilization of the ionBooster source, limits for the automated detection comparable to cut‐off values of routine MRM methods were achieved for the majority of analytes. Even compounds not identified when using a conventional ESI source were detected using the ionBooster‐source. LODs in serum range from 0.1 ng/ml to 0.5 ng/ml. The use of parent compounds as analytical targets offers the possibility of instantly adding new emerging compounds to the library and immediately applying the updated method to serum samples, allowing the rapid adaptation of the screening method to ongoing forensic or clinical requirements. The presented approach can also be applied to other specimens, such as oral fluid or hair, and herbal mixtures and was successfully applied to authentic serum samples. Quantitative MRM results of samples with analyte concentrations above the determined LOD were confirmed as positive findings by the presented method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Test methods have to be developed by laboratories for official control to monitor possible misuse of veterinary drugs in animal productions, also through feeding stuff. A novel method for identification and quantification of levamisole in feeds by liquid chromatography coupled to electrospray mass spectrometry in an ion trap (LC/ESI‐MS/MS) is herein described; after a single‐step cleanup by liquid‐liquid extraction from the feed and separation by reversed‐phase liquid chromatography, levamisole was determined and unambiguously confirmed by tandem mass spectrometry, on the basis of two product ions. The method was in‐house validated, according to the Regulation 882/2004/EC, evaluating trueness, repeatability, within‐laboratory reproducibility, ruggedness, specificity, and the limit of quantification (LOQ). The method is reliable and specific for complete and complementary feeds for pigs, cattle, rabbits and poultry; very good mean recoveries (higher than 92 %) and precision (RSD values < 15.2%) were attained. The LOQ at 2.0 mg/kg was verified. Moreover, we describe how the method was developed to support Italian Police investigations regarding illegal treatments of pigs; in this case, since the drug(s) added to the feed were unknown, a preliminary untargeted analysis was performed by full scan mass spectrometry on an ion trap, from 50 up to 2000 m/z; the presence of levamisole was hypothesised, on the basis of the most abundant ion and its fragmentation pattern. Then, levamisole was unambiguously confirmed by the ion trap LC/ESI‐MS/MS method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The demand for clinical toxicology analytical methods for identifying drugs of abuse and medicinal drugs is steadily increasing. Structural elucidation of amino amide‐type local anesthetic drugs and their main metabolites by GC‐EI‐MS and LC‐ESI‐MS/MS is of great analytical challenge. These compounds exhibit only/mostly fragments/product ions representing the amine‐containing residue, while the aromatic amide moiety remains unidentified. This task becomes even more complicated when discrimination between positional isomers of such compounds is required. Here, we report the development of a derivatization procedure for the differentiation and structural elucidation of a mixture of local anesthetic drugs and their metabolites that possess tertiary and secondary amines in water and urine. A method based on two sequential “in‐vial” instantaneous derivatization processes at ambient temperature followed by LC‐ESI‐MS/MS analysis was developed. 2,2,2‐Trichloro‐1,1‐dimethylethyl chloroformate (TCDMECF) was utilized to selectively convert the secondary amines into their carbamate derivatives, followed by hydrogen peroxide addition to produce the corresponding tertiary amine oxides. The resulting derivatives exhibited rich fragmentation patterns, enabling improved structural elucidation of the original compounds. The developed method was successfully applied to the differentiation and structural elucidation of prilocaine and its four positional isomers, which all possess similar GC and LC retention times and four of them exhibit almost identical EI‐MS and ESI‐MS/MS spectra, enabling their structural elucidation in a single LC‐ESI‐MS/MS analysis. The developed technique is fast and simple and enables discrimination between isomers based on different diagnostic ions/fragmentation patterns.  相似文献   

12.
A new analytical technique for the structural elucidation of four representative phenidate analogues possessing a secondary amine residue, which leads to a major/single amine‐representative fragment/product ion at m/z 84 both in their GC‐EI‐MS and LC‐ESI‐MS/MS spectra, making their identification ambiguous, was developed. The method is based on “in vial” chemical derivatization with isobutyl chloroformate in both aqueous and organic solutions, followed by liquid chromatography‐electrospray ionization mass spectrometry (LC‐ESI‐MS/MS). The resulting carbamate derivatives promote rich fragmentation patterns with full coverage of all substructures of the molecule, enabling detailed structural elucidation and unambiguous identification of the original compounds at low ng/mL levels.  相似文献   

13.
The possibility of detecting extraneous milk in singles species cheese‐milk has been explored. A mass spectrometry (MS)‐based procedure has been developed to detect 'signature peptides', corresponding to the predefined subset of 'proteotypic peptides', as matchless analytical surrogates of the parent caseins. Tryptic digests of skimmed milk samples from four species were analyzed by matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) MS. Amongst the candidate signature peptides that are able to differentiate milks from the four species, the αs1‐casein (CN) f8‐22 peptide was selected as a convenient marker for bovine, ovine and water buffalo milk while the f4‐22 peptide was selected as a marker for the two caprine αs1‐CN A and B variants, which differ by a Pro16 (B)‐>Leu16 (A) substitution. MALDI analysis of the digest allowed the detection of αs1‐CN f8‐22 and caprine αs1‐CN f4‐22. The accurate evaluation of caprine milk in a quaternary mixture required the development of a liquid chromatography/electrospray ionization (LC/ESI)‐MS procedure. Five synthetic signature peptide analogues, which differed from their natural counterparts by a single amino acid substitution, were used as internal standards to quantify the αs1‐CN, which was chosen as a reference milk protein, from the different species. The limits of detection were 0.5% (1% for caprine) for either the MALDI or the LC/ESI‐MS method. The isotopic‐label‐free quantification of isoform‐ or variant‐specific signature peptides has disclosed a convenient approach for targeting proteins in complex mixtures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
We applied a new technique for quantitative linear range shift using in‐source collision‐induced dissociation (CID) to complex biological fluids to demonstrate its utility. The technique was used in a simultaneous quantitative determination method of 5‐fluorouracil (5‐FU), an anticancer drug for various solid tumors, and its metabolites in human plasma by liquid chromatography–electrospray ionization–tandem mass spectrometry (LC/ESI‐MS/MS). To control adverse effects after administration of 5‐FU, it is important to monitor the plasma concentration of 5‐FU and its metabolites; however, no simultaneous determination method has yet been reported because of vastly different physical and chemical properties of compounds. We developed a new analytical method for simultaneously determining 5‐FU and its metabolites in human plasma by LC/ESI‐MS/MS coupled with the technique for quantitative linear range shift using in‐source CID. Hydrophilic interaction liquid chromatography using a stationary phase with zwitterionic functional groups, phosphorylcholine, was suitable for separation of 5‐FU from its nucleoside and interfering endogenous materials. The addition of glycerin into acetonitrile‐rich eluent after LC separation improved the ESI‐MS response of high polar analytes. Based on the validation results, linear range shifts by in‐source CID is the reliable technique even with complex biological samples such as plasma. Copyright © 2016 John Wiley & Sons Ltd.  相似文献   

15.
A rapid and sensitive method for the identification and quantification of 10‐hydroxycamptothecine (HCPT) in Camptotheca acuminata Decne is described. The HCPT standard solution was directly infused into the ion trap mass spectrometers (IT/MS) for collecting the MSn spectra. The electrospray ionization (ESI) mass spectral fragmentation pathway of HCPT was proposed and the ESI‐MSn fragmentation behavior of HCPT was deduced in detail. The major fragment ions of HCPT were confirmed by MSn in both negative ion and positive ion mode. The possible main cleavage pathway of fragment ions was studied. Quantification of HCPT was assigned in negative‐ion mode at a product ion at m/z 363 → 319 by LC‐MS. The LC‐MS method was validated for linearity, sensitivity, accuracy and precision, and then used to determine the content of the HCPT. Lastly, the LC‐MS method was successfully applied to determine HCPT in real samples of Camptotheca acuminate Decne and its medicinal preparation in the first time. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
We report a cyclic sample pooling technique devised in two‐dimensional liquid chromatography–electrospray ionization mass spectrometry (LC‐ESI‐MS) shotgun proteomics that renders deeper proteome coverage; we combined low pH reversed‐phase (RP) LC in trifluoroacetic acid in the first dimension, followed by cyclic sample pooling of the eluate and low‐pH RP‐LC in formic acid in the second dimension. The new protocol has a significantly higher resolving power suitable for LC‐ESI‐MS/MS shotgun proteomics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Interferon α‐2b produced by Escherichia coli consists of 165 amino acids and contains two disulphide bonds; its purity was confirmed by LC‐UV (DAD)‐FLD and LC‐MS techniques. A C4 column was used with UV detection at 214 nm; diode array detector (DAD) spectra were recorded from 200–400 nm and fluorescence detection was performed at specific wavelengths of trypthophan emission and excitation. Peptide mapping was performed with trypsin. Peptides produced by trypsin digestion were analysed by LC‐UV (DAD)‐FLD, LC‐MS, and LC‐MS/MS using a C18 column. Amino acid sequence coverage was about 95%. UV spectra in the range from 200 nm to 400 nm, emission (Em) and excitation (Ex) spectra of each separated peptide were additionally compared with spectra of the same peptide produced by digestion of European Pharmacopaeia interferon α‐2b standard (spectral matching). The chromatogram of any interferon α‐2b (drug substance or certificated standard) sample produced in the same manner with the same amino acid composition should be similar to the chromatogram obtained by the method described in this paper. Molecular masses of peptides were obtained from MS experiments and MS/MS experiments gave additional structural information. The molecular mass of interferon α‐2b was obtained by MALDI‐TOF MS analysis in linear mode, with an accuracy comparable to the theoretical average mass ± 5 atomic mass units. The molecular mass was obtained from the deconvoluted ESI mass spectrum.  相似文献   

18.
In the present study, we report the application of LC‐MS based on two different LC‐MS systems to mycotoxin analysis. The mycotoxins were extracted with an ACN/water/acetic acid mixture and directly injected into a LC‐MS/MS system without any dilution procedure. First, a sensitive and reliable HPLC‐ESI‐MS/MS method using selected reaction monitoring on a triple quadrupole mass spectrometer (TSQ Quantum Ultra AM) has been developed for determining 32 mycotoxins in crude extracts of wheat and maize. This method was operated both in positive and in negative ionization modes in two separate chromatographic runs. The method was validated by studies of spiked recoveries, linearity, matrix effect, intra‐assay precision and sensitivity. Further, we have developed and evaluated a method based on accurate mass measurements of extracted target ions in full scan mode using micro‐LC‐LTQ‐Orbitrap as a tool for fast quantitative analysis. Both instruments exhibited very high sensitivity and repeatability in positive ionization mode. Coupling of micro‐LC to Orbitrap technology was not applicable to the negatively ionizable compounds. The LC triple quadrupole MS method has proved to be stable in quantitation, as it is with respect to the matrix effects of grain samples.  相似文献   

19.
The use of blood spot collection cards is a simple way to obtain specimens for therapeutic drug monitoring, assessing adherence to medications and preventing toxicity in a clinical setting. A high‐throughput liquid chromatography–electrospray ionization mass spectrometric (LC‐ESI‐MS) method for determination of rifaximin on dried blood spots (DBS) was developed and validated. It involves solvent extraction of a punch of DBS followed by reversed‐phase LC on a monolithic column consisting of a silica rod with bimodal pore structure and detection by ESI‐MS. Rifampicin was used as an internal standard (IS). The run time was within 5.0 min with a very low back‐pressure at a flow rate of 0.5 mL/min. The assay was linear from 0.1 to 10 ng/mL. The mean recovery was 98.42%. The developed method is very simple, rapid and useful for clinical applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
A simple and practical derivatization procedure for increasing the detectability and enantiomeric separation of chiral carboxylic acids in LC/ESI‐MS/MS has been developed. (S)‐Anabasine (ANA) was used as the derivatization reagent and rapidly reacted with carboxylic acids [3‐hydroxypalmitic acid (3‐OH‐PA), 2‐(β‐carboxyethyl)‐6‐hydroxy‐2,7,8‐trimethylchroman (γ‐CEHC), and etodolac] in the presence of 4‐(4,6‐dimethoxy‐1,3,5‐triazin‐2‐yl)‐4‐methylmorpholium chloride. The resulting ANA‐derivatives were highly responsive in ESI‐MS operating in the positive‐ion mode and gave characteristic product ions during MS/MS, which enabled sensitive detection using selected reaction monitoring; the detection responses of the ANA‐derivatives were increased by 20–160‐fold over those of the intact carboxylic acids and the limits of detection were in the low femtomole range (1.8–11 fmol on the column). The ANA‐derivatization was also effective for the enatiomeric separation of the chiral carboxylic acids; the resolution was 1.92, 1.75, and 2.03 for 3‐OH‐PA, γ‐CHEC, and etodolac, respectively. The derivatization procedure was successfully applied to a biological sample analysis; the derivatization followed by LC/ESI‐MS/MS enabled the separation and detection of trace amounts of 3‐OH‐PA in neonatal dried blood spot and γ‐CEHC in human saliva with a simple pretreatment and small sample volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号